01摘要
离子敏感场效应晶体管(ISFET)已成为化学传感应用中不可或缺的工具1,2,3,4。ISFET通过将化学溶液成分的变化转化为电信号来工作,使其成为环境监测5,6、医疗诊断7和工业过程控制8的理想选择。ISFET技术的最新进展,包括功能化多路复用阵列和高级数据分析,提高了它们的性能9,10。在这里,我们说明了将机器学习算法结合起来,使用ISFET传感器为分类和量化任务生成的大量数据集构建预测模型的优点。这种整合也为ISFET的工作提供了新的视角,超越了仅凭人类专业知识所能获得的。此外,它缓解了与循环到循环、传感器到传感器和芯片到芯片变化相关的实际挑战,为ISFET在商业应用中的更广泛采用铺平了道路。具体来说,我们使用非功能化石墨烯基ISFET阵列生成的数据来训练人工神经网络,这些网络具有识别食品欺诈、食品变质和食品安全问题的显著能力。我们预计,紧凑、节能和可重复使用的基于石墨烯的ISFET技术与强大的机器学习算法的融合有可能彻底改变微妙的化学和环境变化的检测,提供适用于广泛应用的快速、数据驱动的见解。
02图表简介
a、 代表性石墨烯基ISFET的横截面示意图。b、 对于pH值为4至10的整数缓冲溶液,代表性ISFET的传输特性,即源极到漏极电流(IDS),作为液体顶栅电压(VLTG)的函数绘制。c、 VDirac,f相对于标准缓冲溶液的pH值绘制。拟合线是使用线性回归创建的。灵敏度被确定为S=52 mV pH-1,决定系数(回归得分)为R2=0.98。d、 七个石墨烯ISFET在两个单独芯片上的传输特性。e、 VDirac的pH敏感性,f考虑了循环之间、传感器之间和芯片之间的变化。f、 方框图显示了在输入FOM的所有可能的单变量和多变量组合上评估的k-NN算法的最小、第25百分位、中值、第75百分位和最大精度。红叉表示异常值,其精度与第25或第75百分位数的差值大于四分位数间距的1.5倍。
a、 ANN架构由一个一维卷积神经网络(CNN)组成,该网络充当特征提取器,后面是三个完全连接的网络层。该模型旨在预测pH 4至pH 10的pH等级。b、c,混淆矩阵显示了用FOM(b)或整个石墨烯ISFET特性(c)训练后模型的分类准确性。d、 每个pH值等级的SHAP特征,在代表性输入中为每个数据点分配SHAP值。蓝色表示的正SHAP值表示高重要性区域,表示作为相应输入类别的预测概率较高,而红色表示的负SHAP值则表示作为该类别的预测可能性降低。接近零的无色值对类别预测概率没有贡献。
a、 掺有不同比例水的全脂牛奶样品不仅外观相似,而且pH值也相似。b、 当用纯全脂牛奶和四种不同掺假水平(即5%、10%、20%和30%)的牛奶进行测试时,六种石墨烯ISFET的转移特性。c、 混淆矩阵显示了每种牛奶类别的每类准确性。d、 SHAP特征分析突出了石墨烯ISFET特征中的属性,这些属性能够区分全脂牛奶中不同百分比的掺假。e、 基于ANN的回归模型的架构。f、 掺假预测水平和真实水平之间的误差直方图。
03 参考文献
Liu Y , Qin Z , Yang X ,et al.High-Voltage Manganese Oxide Cathode with Two-Electron Transfer Enabled by a Phosphate Proton Reservoir for Aqueous Zinc Batteries[J]. 2022.
关注公众号:工大博士科研日常分享
小编有话说:本文仅作科研人员学术交流,由于小编才疏学浅,不科学之处欢迎批评。如有其他问题请随时联系小编。欢迎关注,点赞,转发,欢迎互设白名单。投稿、荐稿:1395179267@qq.com