Shopee首公里追踪功能解读和最新的发货时效和换仓设置解读

本文介绍了Shopee的首公里追踪功能,指出当商品从卖家仓库送往Shopee仓库时即显示已发货,缩短了买家看到的发货时间和系统检测的平均发货时间。文章还强调了使用首公里追踪的条件,包括发货预报操作和订单绑定,并提醒卖家注意发货时效的变化,如DTS从2天变为3天,以及自动取消订单的时间调整。此外,文章提及了换仓设置及其影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此文写于2020.12.23 大家后续看到注意政策多变,要关注最新政策

官方直播的ppt内容我直接粘贴了哈,不要嫌我懒哈哈

卖家仓库送往shopee仓库,就会显示已发货(注意看是卖家仓库发出哦,有货代的相当于货代发到shopee仓。供应商发出肯定不算的)。缩短的是两个方面:1.买家看到的发货时间

2.系统检测的卖家发货平均时间

其实对咱们来说唯一的用处就是,避免仓库晚扫描造成延迟,因为咱们发去shopee仓就算作已经发货了,而不是必须shopee仓扫描才算,大家都知道的之前就算当天送去shopee仓,小概率当天也没给你扫上

使用条件:

 

流程对比下,我给大家解读一下。

报名首公里以后,需要对这次揽收进行首公里发货

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart DietzHerbert Krim于2011年提出,主要针对传统傅立叶变在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解应用这一技术。其核心算法主要包括以下步骤:先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方以及模态频率的离散时间傅立叶变(DTFT)约束,更新每个模态函数中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度相位,直至满足停止条件(如达到预设迭代次数或残差平方小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数约束参数等;VMD算法主体,包含初始化、交替最小二乘法迭代优化过程;以及后处理,对分解结果进行评估可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值