二分查找算法基础 及 进阶 详解 上边界与下边界

本文介绍了二分查找算法的基础概念,强调了排序在查找中的重要性,并通过实例展示了非递归和递归两种实现方式。进阶篇探讨了如何在找到目标元素时获取其出现的区间,并提醒了在实现过程中避免死循环的注意事项。最后,从数学角度分析了二分查找的时间复杂度,指出其高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 基础篇        

        首先明确,二分查找算法应用的前提是数组已经排序完成。排序的重要意义之一,就是为检索带来方便。试想有 10^{6} 个整数,希望确认其中是否包含 12345,最容易想到的方法是把他们放到数组里面,然后一次检查这些整数是否等于12345。这样的方式对于 “单次询问” 来说运行的很好,也很简单,但如果需要找10000个数,就需要把整个数组遍历10000次。而如果先将数组排序,就可以查找的更快——好比在字典中找单词不必一页一页翻一样。

        在有序表中查找元素常常使用二分查找法(Binary Search),有时也译为 “折半查找” ,基本思路就像是 “猜数字游戏” :你在心里想一个不超过1000的正整数,我可以保证在10次之内猜到它——只要你每次告诉我猜的数比你想的大一些、小一些,或者正好猜中。

        猜的方法就是 “二分”。首先我才猜500,除了运气特别好正好猜中以外,不管你说 “太大” 还是 “太小” ,我都能把可行范围缩小一半:如果 “太大” ,那么答案在1~499之间;如果 “太小”,那么答案在501~1000之间。只要每次选择区间的中点去猜,每次都可以把范围缩小一般。由于

log_{2}1000<10 ,10次一定能猜到.

       这也是二分查找的基本思路。

在算法竞赛中一般用非递归的写法:

public class Main{
    public static void main(String[] args) throws IOException {
        int[] nums = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
        int target = 7;
        int left = 0, right = nums.length, mid = 0;
        while(left <= right) {
            mid = (left + right) / 2;
            if(nums[mid] == target) break;
            else if(nums[mid] > target) right = mid - 1;
            else left = mid + 1;
        }
        System.out.println(nums[mid]);
    }
}

当然,还有活在课本里的递归写法:

public static int binarySearch(int[] a,int left,int right, int target) {
        int mid=0;
        while(left<right){
            mid = (left + right) / 2;
            if(a[mid] == target) return mid;
            else if(a[mid] > target) right = mid - 1;
            else left = mid + 1;
        }
        return -1;
    }


二. 进阶篇

        如果数组中有多个元素都是target,上面的函数返回的是哪一个的下标呢?第一个?最后一个?。不难看出,如果所有元素都是要找的,它返回的是中间那一个。有时,这样的结果并不是很理想,能不能求出值等于target的完整区间呢(由于已经排好序,相等的值会在一起)?

        下面的程序,当target存在时返回它出现的第一个位置(左闭右开)。如果不存在,返回这样一个下标i:在此处插入target后序列依然有序。

public static int binarySearch(int[] a,int left,int right, int target) {
        int mid=0;
        while(left<right){
            mid = (left + right) / 2;
            if(a[mid] >= target) right = mid;
            else left = mid + 1;
        }
        return left;
    }

        类似地,可以写一个upperBound程序,当target存在时返回它出现的最后一个位置的下一个位置(左闭右开)(因为要求最后一个位置的下一个位置,所以最开始的right赋值为数组最右索引+1)。如果不存在,返回这样一个下标i:在此处插入target后序列任然有序。

public static int binarySearch(int[] a,int left,int right, int target) {
        int mid=0;
        while(left<right){
            mid = (left + right) / 2;
            if(a[mid] <= target) left = mid + 1;
            else right = mid;
        }
        return left;
    }

        !!!注意这里有个非常要注意的地方,mid = (left + right) / 2;这个地方,计算的时候由于会舍弃小数点后面部分(例如(1+2)/2 => 1 ,(1+3)/2 => 2),容易造成死循环bug,假如上面这个程序这么写:

        当target存在时返回它出现的位置。

public static int binarySearch(int[] a,int left,int right, int target) {
        int mid=0;
        while(left<right){
            mid=(left+right)/2;
            if(a[mid]>=target) right=mid-1;
            else left=mid;
        }
        return left;
    }

        给出数组[1,3],target=2,那么这个程序会死循环,因为mid永远指向1,而target是2,永远都left=mid!!!这里留给读者自己思考(提示,求解上边界或者下边界的时候,最好都写成left=mid+1,right=mid。不要写成left=mid,right=mid-1)。


三. 数学推理

        最后用数学的角度求出二分查找的时间复杂度:

        T\left ( n \right )=T\left ( \frac{n}{2} \right )+c =T\left ( \frac{n}{2} \right )+c+c =T\left ( \frac{n}{2^{k}} \right )+kc=T\left ( 1 \right )+clogn=O(logn)

      忽略常量和非主导项,二分查找算法的时间复杂度为O(logn)。具有O(logn)时间复杂度的算法称为对数算法,体现了对数级的增长率。log的底为2,但是底不会影响对数的增长率,因此可以将其忽略。随着时间规模的增长,对数算法复杂度增长的比较缓慢。在二分查找的示例中,将数组的大小翻倍,最多增加一次的比较。如果输入规模平方,那么算法的时间复杂度只会加倍。因此,对数-时间算法是很高效的。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玛卡左家陇分卡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值