基于深度学习的电车电池管理系统|FYP阶段性总结1

FYP: Final Year Projects (in National University of Singapore)

优质论文阅读

综述

【Nature 子刊】Predicting the state of charge and health of batteries

在这里插入图片描述

文章信息背景、目的及结论结果与讨论文章好在哪里
题目:Predicting the state of charge and health of batteries using data-driven machine learning背景

Rechargeable lithium-ion (Li-ion) batteries are currently the best choice for EVs due to their reasonable energy density and cycle life1.” (Ng 等, 2020, p. 161)

“An advanced battery management system (BMS) that can monitor and optimize battery behaviour and safety is thus essential for the entire electrification system2.” (Ng 等, 2020, p. 161)

“accurate prediction of the current and future state of batteries will open up vast opportunities in battery manufacturing, usage and optimization” (Ng 等, 2020, p. 161)
目前,研究最多的两种电池状态预测模型是 equivalent circuit models(ECM) 和 physics-based models(PBM)。尽管它们很受欢迎并且不断发展,但在使用这些模型进行在线电池状态预测时,计算效率和准确性之间仍然存在明显的权衡。

具有机器学习功能的Data-driven model (DDM) 是一种很有前景的电池建模方法,有可能解决使用 ECM 或 PBM 的传统建模所面临的困境。

目前,大多数机器学习模型都给出黑匣子电池状态预测,这使得很难推广到其他电池化学成分。领域知识的结合为可解释的“白盒”预测铺平了道路。

此外,高通量实验(也许以初步机器学习结果为指导)是为机器学习提供真实且高质量的电池性能数据集的关键。

随着计算技术和数学算法的进步,加上数据存储设备和高通量实验成本的降低,我们预计数据驱动的机器学习将成为未来实时电池建模的一项有前途的技术
  • 结构非常清晰,在abstract中就非常清晰的表明了研究First, based on…, finally, overall
  • 统计了非常多电池领域研究的模型、特称输入、输出、误差
期刊:Nature Machine Intelligence-计算机TOP
单位:(A*STAR), Singapore目的
  1. review the two most studied types of battery models
  2. showcase the promise of various machine learning techniques for fast and accurate battery state prediction
  3. highlight the major challenges involved, especially in accurate modeling over length and time, performing in situ calculations and high-throughput data generation
  4. provides insights into real-time, explainable machine learning for battery production, management and optimization in the future
作者:Man-Fai Ng
文章类型:综述不足
阅读程度:全文精读

【ANN】Applications of artificial neural network based battery management systems: Aliterature review

文章信息背景、目的及结论文章好在哪里
题目:Applications of artificial neural network based battery management systems: A literature review背景

Greenhouse

近年来,基于机器学习的研究的流行,特别是基于Meachine Learning的算法提供了比基于模型的算法更高的可用性,使得它们更受研究人员的青睐,即使这两种方法各有优缺点[ 7 ]。
主要研究ANN,并且包含了SOTA methods
期刊:Renewable and Sustainable Energy Reviews-工程技术TOP
单位:Ardahan University, Department of Computer Engineering, Ardahan, Türkiye目的
  1. encompasses a wide range of studies on ANN-based battery management systems
  2. highlights current trends and identifies gaps in BMS applications
  3. offers insights and directions for future research and development
作者:Mehmet Kurucan
文章类型:综述不足
阅读程度:泛读

小论文

SOH 方向:

Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine

RUL 方向

【代码开源·已复现】A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life

在这里插入图片描述

文章信息背景、目的及结论结果与讨论文章好在哪里
题目:A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life背景
  1. 电池内部发生复杂的退化机制以及实际应用中的动态工作条件,并且早期的容量衰减并不明显,利用早期循环数据来早期预测电池寿命可能会更加困难。
  2. most of methods can achieve relatively good performance on primary test set but generalize worse on secondary test set.
proposed hybrid model outperforms SOTA approaches in terms of two evaluation criteria in the primary test set, and also has better generalization ability to the secondary test set.

在这里插入图片描述
在先前的工作[5]中缺少从这些基于领域知识的特征中正确选择关键特征的过程

为了解决这一局限性,作者提出了一种基于斯皮尔曼相关系数的非线性相关特征选择方法,以从领域知识特征中识别最相关的特征。
  1. 首次提出使用混合模型来结合领域知识和模型学习的潜在特征去预测RUL
  2. 提出了一种基于非线性相关性的方法,用于 从过多的基于领域知识的特征中进行特征选择,该方法简单但可以有效提高电池 RUL 预测的性能
  3. 在所提出的深度学习框架上开发了一种新颖的 快照集成学习策略,以进一步增强模型的泛化能力,而不增加任何额外的训练成本
  4. 提出的方法在锂电池的早期预测任务中 优于最先进的方法。它不仅可以在与训练集分布相似的测试集中取得良好的性能,而且在与训练集分布明显不同的测试集中也可以很好地泛化。
单位:Institute for Infocomm Research, Singapore
期刊:IEEE/CAA Journal of Automatica Sinica-Q1目的:有效地将手工特征与深度网络学习到的领域知识和潜在特征相结合,以提高 RUL 早期预测的性能
**作者:**Qing Xu
不足&展望

我们打算将基于物理的模型与深度学习模型相结合,因为基于物理的模型以其物理可解释性和准确建模LIB退化过程的出色能力而闻名[37],[38]。这两类模型的结合将产生新的混合模型,这些模型在物理上更加一致、可解释和准确。此外,我们还打算在未来的工作中研究准确预测电池 RUL 所需的最小循环次数,因为它可以显着降低实际应用中电池制造的实验成本。
代码运行结果
pytorch_hybrid_model_snapshot_train.py

项目进度

下一阶段安排:

  • 弄懂 SOC (state of health)该怎么使用数据集的数据计算,积分?

  • 尝试更多的模型来处理HIs

    • WOA-ELM ?
    • RNN如LSTM等:之前尝试过,但是开源模型代码无论如何调用都显示报错
  • 在同学的合作下加入更多的HIs


下面是梳理的五大最常用的开源数据集地址:

开源数据集

最常见五大的数据集:

在这里插入图片描述

NASA dataset

https://c3.ndc.nasa.gov/dashlink/resources/133/

在这里插入图片描述

  1. Batteries 电池 (此数据集在论文中比后者使用更频繁)

数据集格式:.mat

Experiments on Li-Ion batteries. Charging and discharging at different temperatures. Records the impedance as the damage criterion. The data set was provided by the NASA Prognostics Center of Excellence (PCoE).

锂离子电池实验。在不同温度下充电和放电。记录阻抗作为损坏标准。该数据集由 NASA 卓越预测中心 (PCoE) 提供。

  • Download Mirror: https://phm-datasets.s3.amazonaws.com/NASA/5.+Battery+Data+Set.zip
  • 下载镜像:https://phm-datasets.s3.amazonaws.com/NASA/5.+Battery+Data+Set.zip
  • Data Set Citation: B. Saha and K. Goebel (2007). “Battery Data Set”, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA
  • 数据集引用:B. Saha 和 K. Goebel (2007)。 “电池数据集”,NASA 预测数据存储库,NASA 艾姆斯研究中心,莫菲特菲尔德,加利福尼亚州

数据集结构
数据集结构

  1. Accelerated Battery Life Testing 加速电池寿命测试

This data set presents accelerated-Li-ion battery lifecycle data focused on a large range of load levels and the characterization of the lifecycle of a battery pack composed of two 18650 battery cells. The lifecycle study is conducted with a total of 26 battery packs that are grouped by constant and random loading conditions, loading levels, and number of load-level changes. The data also includes load cycling on second-life batteries, where surviving cells from previously aged battery packs were assembled for second-life packs.

该数据集提供了加速锂离子电池生命周期数据,重点关注大范围的负载水平以及由两个 18650 电池组成的电池组的生命周期特征。生命周期研究总共对 26 个电池组进行,这些电池组按恒定和随机负载条件、负载水平和负载水平变化次数进行分组。该数据还包括二次电池的负载循环,其中将先前老化的电池组中的剩余电池组装为二次电池组。

Download: https://data.nasa.gov/download/xg3n-ngei/application%2Fzip

下载:https: //data.nasa.gov/download/xg3n-ngei/application%2Fzip

Data Set Citation: Fricke, K., Nascimento, R., Corbetta, M., Kulkarni, C., & Viana, F. “Accelerated Battery Life Testing Dataset”, NASA Prognostics Data Repository, Probabilistic Mechanics Lab, University of Central Florida, and NASA Ames Research Center, Moffett Field, CA

数据集引用:Fricke, K.、Nascimento, R.、Corbetta, M.、Kulkarni, C. 和 Viana, F.“加速电池寿命测试数据集”,NASA 预测数据存储库,概率力学实验室,中佛罗里达大学和美国宇航局艾姆斯研究中心,莫菲特菲尔德,加利福尼亚州

Publication Citation: Fricke, K., Nascimento, R., Corbetta, M., Kulkarni, C., & Viana, F. (2023). Prognosis of Li-ion Batteries Under Large Load Variations Using Hybrid Physics-Informed Neural Networks. Annual Conference of the PHM Society, 15(1). https://doi.org/10.36001/phmconf.2023.v15i1.3463

出版物引用:Fricke, K.、Nascimento, R.、Corbetta, M.、Kulkarni, C. 和 Viana, F. (2023)。使用混合物理信息神经网络对大负载变化下的锂离子电池进行预测。 PHM 协会年会, 15 (1)。 https://doi.org/10.36001/phmconf.2023.v15i1.3463

This data set was generated from a custom-made testbed to cycle battery packs designed and developed by Kajetan Fricke, Renato Nascimento, and Professor Felipe Viana from the Probabilistic Mechanics Laboratory at the University of Central Florida (UCF). This work is the result of a collaboration between the Probabilistic Mechanics Lab at the University of Central Florida, and the Intelligent Systems Division Diagnostics & Prognostics Group at NASA Ames Research Center.

该数据集是由中佛罗里达大学 (UCF) 概率力学实验室的 Kajetan Fricke、Renato Nascimento 和 Felipe Viana 教授设计和开发的循环电池组定制测试台生成的。这项工作是中佛罗里达大学概率力学实验室和美国宇航局艾姆斯研究中心智能系统部诊断与预测小组合作的结果。

CACLE dataset

数据文件与种类太多,暂时不知道如何利用

https://calce.umd.edu/battery-data#CS2

数据集格式:.txt

在这里插入图片描述

在这里插入图片描述

Oxford dataset

两种数据集不知道用哪个

Oxford Battery Degradation Dataset 1

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Readme.txt:


在这里插入图片描述

Oxford energy trading battery degradation dataset

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MIT dataset (A123)

A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life

此论文使用的就是这个数据集

https://data.matr.io/1/projects/5c48dd2bc625d700019f3204

在这里插入图片描述

在这里插入图片描述

The following repository contains some starter code to load the datasets in either MATLAB or python:

以下存储库包含一些用于在 MATLAB 或 python 中加载数据集的起始代码:

https://github.com/rdbraatz/data-driven-prediction-of-battery-cycle-life-before-capacity-degradation

Aging dataset

xtangai/Ageing-Data-Set: Data and Code related to 'Recovering large-scale battery ageing data-set with machine learning

与数据集相关的开源代码:

https://github.com/xtangai/Ageing-Data-Set

与数据集相关的论文:

Xiaopeng Tang, Liu Kailong, Li Kang, Widanage Widanalage, Kendrick Emma, Gao Furong. Recovering large-scale battery aging dataset with machine learning. Patterns 2021;2. http://dx.doi.org/10.1016/j.patter.2021.100302.

在这里插入图片描述


参考资料

[1] Ng, MF., Zhao, J., Yan, Q. et al. Predicting the state of charge and health of batteries using data-driven machine learning. Nat Mach Intell 2, 161–170 (2020).

[2] Mehmet Kurucan, Mete Özbaltan, Zeki Yetgin, Alkan Alkaya, Applications of artificial neural network based battery management systems: A literature review, Renewable and Sustainable Energy Reviews, Volume 192, 2024, 114262, ISSN 1364-0321.

[3] Nanhua Jiang, Jiawei Zhang, Weiran Jiang, Yao Ren, Jing Lin, Edwin Khoo, Ziyou Song, Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine, Applied Energy, Volume 364, 2024, 123122, ISSN 0306-2619.

[4] Q. Xu, M. Wu, E. Khoo, Z. Chen and X. Li, “A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life,” in IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 1, pp. 177-187, January 2023, doi: 10.1109/JAS.2023.123024.

[5] DASHlink - Li-ion Battery Aging Datasets. https://c3.ndc.nasa.gov/dashlink/resources/133/.

[6] Battery Data | Center for Advanced Life Cycle Engineering. https://calce.umd.edu/battery-data#CS2.

[7] Birkl, C. Oxford Battery Degradation Dataset 1. 2017年. ora.ox.ac.uk, https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac.

[8] Reniers, J. M., 等. Oxford Energy Trading Battery Degradation Dataset. 2020年. ora.ox.ac.uk, https://ora.ox.ac.uk/objects/uuid:9aae61af-2949-49f1-8ad5-6aea448979e5.

[9] Experimental Data Platform. https://data.matr.io/1/#projects/5c48dd2bc625d700019f3204.

[10] Xtangai. xtangai/Ageing-Data-Set: Data and Code related to 《Recovering large-scale battery ageing data-set with machine learning》. Zenodo, 2021年5月30日. DOI.org * (Datacite)*, https://doi.org/10.5281/ZENODO.4867041.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

提拉米苏不吃肉

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值