51. N皇后
class Solution {
private:
vector<vector<string>> result;
void backtracking(int n,int row,vector<string>& chessBoard){
if(row==n){
result.push_back(chessBoard);
return;
}
for(int i=0;i<n;i++){
if(isValid(n,row,i,chessBoard)){
chessBoard[row][i]='Q';
backtracking(n,row+1,chessBoard);
chessBoard[row][i]='.';
}
}
return;
}
public:
bool isValid(int n,int row,int col,vector<string>& chessBoard){
for(int i=0;i<row;i++){
if(chessBoard[i][col]=='Q') return false;
}
for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
if(chessBoard[i][j]=='Q') return false;
}
for(int i=row-1,j=col+1;i>=0&&j<n;i--,j++){
if(chessBoard[i][j]=='Q') return false;
}
return true;
}
vector<vector<string>> solveNQueens(int n) {
result.clear();
vector<string> chessBoard(n,string(n,'.'));
backtracking(n,0,chessBoard);
return result;
}
};
递归的参数为皇后的个数,递归的行数,创建的棋盘,递归的返回值无;递归的终止条件为当递归的层数到达n层时,result记录该棋盘并返回,就相当于记录叶子节点;单层递归逻辑为用for循环横向遍历,横向遍历的宽度为n,row表示递归的深度,和之前一些题目startIndex类似,进入for循环先判断是否符合要求,如符合要求chessBoard[row][i]=‘Q’,直接进入下一层递归,递归之后在回溯,chessBoard[row][i]=‘.’。判断是否符合要求的函数,可以适当剪枝,只用考虑该位置同一列,上面部分否有'Q',以及该位置上半部分左右两斜线上是否有'Q'。result数据结构与要返回的数据结构相同,棋盘二维数组的初始化方式与一维数组初始化方式相同。