62.不同路径
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m,vector<int>(n,0));
for(int i=0;i<n;i++) dp[0][i]=1;
for(int i=0;i<m;i++) dp[i][0]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
return dp[m-1][n-1];
}
};
这道题和台阶题类似,到达下一个点是由上两个点决定的,即该点左侧的点和该点上面的点,到达该点的路径总和为dp[i][j]=dp[i-1][j]+dp[i][j-1],dp数组初始化为整个二维数组的上边界和左边界,因为是从左上角出发,行进方向只有向右和向下,所以遍历顺序为从左到右从上到下,用两层for从左到右一层一层遍历,注意末尾点是dp[m-1][n-1],不是dp[m][n]
63. 不同路径 II
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size();
int n=obstacleGrid[0].size();
vector<vector<int>> dp(m,vector<int>(n,0));
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;
for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) dp[i][0]=1;
for(int i=0;i<n&&obstacleGrid[0][i]==0;i++) dp[0][i]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]!=1)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
else dp[i][j]=0;
}
}
return dp[m-1][n-1];
}
};
这道题是上一题的升级版,但是需要注意几个前提条件,在初始化dp数组时,如果障碍物在最左和最上面边界中,则初始化终止,保持为0,当从左到右从上到下遍历dp数组时,遇到障碍物时,则dp[i][j]保持为0
343. 整数拆分
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1);
dp[2]=1;
for(int i=3;i<=n;i++){
for(int j=1;j<=i/2;j++){
dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
}
}
return dp[n];
}
};
这道题代码很简洁,但思维很麻烦,dp[i]的含义是整数i拆分后乘积的最大值,递推公式为dp[i]=max(dp[i]+max(j*(i-j),j*dp[i-j])),这个递推公式意思是,dp[i]不断更新其最大值,dp[i]的最大值由两方面决定,一是拆分为两个数,而是拆分为大于等于三个数以上的乘积,覆盖所以可能拆分的情况,最后取其最大值。vector数组未初始化,默认全为0
96.不同的二叉搜索树
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n+1);
dp[0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
dp[i]+=dp[i-j]*dp[j-1];
}
}
return dp[n];
}
};
dp数组的初始化只能初始化dp[0],其他dp数组值都是从零开始累加,如果有初值,就会增大,这道dp题利用了二叉搜索树的特性,顶点的左子树都是比它小的值,顶点的右子树都是比它大的值,所以就很好判断一个数,左右子树的个数,而个数的排列方式能进行状态转移,用于下一层递推,所以递推公式为dp[i]+=dp[i-j]*dp[j-1]