3.1log | 62.不同路径,63. 不同路径 II,343. 整数拆分,96.不同的二叉搜索树

文章介绍了两个基于动态规划的编程问题:计算不同路径的数量(包括有障碍物的情况)和整数拆分的最大乘积。还讨论了一个关于不同二叉搜索树数量的问题,它们都涉及到了状态转移和递推关系。
摘要由CSDN通过智能技术生成

62.不同路径

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m,vector<int>(n,0));
        for(int i=0;i<n;i++) dp[0][i]=1;
        for(int i=0;i<m;i++) dp[i][0]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i][j-1]+dp[i-1][j];
            }
        }
        return dp[m-1][n-1];
    }
};

这道题和台阶题类似,到达下一个点是由上两个点决定的,即该点左侧的点和该点上面的点,到达该点的路径总和为dp[i][j]=dp[i-1][j]+dp[i][j-1],dp数组初始化为整个二维数组的上边界和左边界,因为是从左上角出发,行进方向只有向右和向下,所以遍历顺序为从左到右从上到下,用两层for从左到右一层一层遍历,注意末尾点是dp[m-1][n-1],不是dp[m][n]

63. 不同路径 II

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<vector<int>> dp(m,vector<int>(n,0));
        if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) dp[i][0]=1;
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++) dp[0][i]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]!=1)
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
                else dp[i][j]=0;
            }
        }
        return dp[m-1][n-1];
    }
};

这道题是上一题的升级版,但是需要注意几个前提条件,在初始化dp数组时,如果障碍物在最左和最上面边界中,则初始化终止,保持为0,当从左到右从上到下遍历dp数组时,遇到障碍物时,则dp[i][j]保持为0

343. 整数拆分

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1);
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<=i/2;j++){
                dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
            }
        }
        return dp[n];
    }
};

这道题代码很简洁,但思维很麻烦,dp[i]的含义是整数i拆分后乘积的最大值,递推公式为dp[i]=max(dp[i]+max(j*(i-j),j*dp[i-j])),这个递推公式意思是,dp[i]不断更新其最大值,dp[i]的最大值由两方面决定,一是拆分为两个数,而是拆分为大于等于三个数以上的乘积,覆盖所以可能拆分的情况,最后取其最大值。vector数组未初始化,默认全为0

96.不同的二叉搜索树

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1);
        dp[0]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                dp[i]+=dp[i-j]*dp[j-1];
            }
        }
        return dp[n];
    }
};

dp数组的初始化只能初始化dp[0],其他dp数组值都是从零开始累加,如果有初值,就会增大,这道dp题利用了二叉搜索树的特性,顶点的左子树都是比它小的值,顶点的右子树都是比它大的值,所以就很好判断一个数,左右子树的个数,而个数的排列方式能进行状态转移,用于下一层递推,所以递推公式为dp[i]+=dp[i-j]*dp[j-1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值