自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 模拟丙氨酸三肽水溶液体系

MindSPONGE介绍分子模拟是指利用计算机以原子水平的分子模型来模拟分子结构与行为,进而模拟分子体系的各种物理、化学性质的方法。它是在实验基础上,通过基本原理,构筑起一套模型和算法,从而计算出合理的分子结构与分子行为。近年来,分子模拟技术发展迅速并且在多个学科领域得到了广泛的应用。在药物设计领域,可用于研究病毒、药物的作用机理等;在生物科学领域,可用于表征蛋白质的多级结构与性质;在材料学领域,可用于研究结构与力学性能、材料的优化设计等;在化学领域,可用于研究表面催化及机理;在石油化工领域,可用于

2021-12-17 15:52:08 260

原创 求解麦克斯韦方程族时需要构建的神经网络

在基于物理信息的自解码器中,神经网络的输入为采样点(X)与隐向量(Z)的融合,神经网络的主体结构采用多通道残差网络并结合Sin激活函数。代码如下:# initialize latent vectornum_scenarios = config["num_scenarios"]latent_size = config["latent_vector_size"]latent_init = np.random.randn(num_scenarios, latent_size) ..

2021-12-17 15:46:18 961

原创 增量训练求解麦克斯韦方程族

原始的PINNs(Physics-Informed Neural Networks, PINNs)方法不具备求解一类方程的能力。当方程中的特征参数(如介电系数等)发生变化时需要重新训练,增加了求解时间。本教程重点介绍基于MindElec套件的物理信息自解码器(Physics-Informed Auto-Decoder)增量训练方法,该方法可以快速求解同一类方程,极大减少重新训练的时间。基于隐向量和神经网络的结合对一系列方程组进行预训练。与求解单个问题不同,预训练步骤中,神经网络的输入为采样点(X)与

2021-12-17 15:38:07 259

原创 增量训练求解麦克斯韦方程族

原始的PINNs(Physics-Informed Neural Networks, PINNs)方法不具备求解一类方程的能力。当方程中的特征参数(如介电系数等)发生变化时需要重新训练,增加了求解时间。本教程重点介绍基于MindElec套件的物理信息自解码器(Physics-Informed Auto-Decoder)增量训练方法,该方法可以快速求解同一类方程,极大减少重新训练的时间。基于隐向量和神经网络的结合对一系列方程组进行预训练。与求解单个问题不同,预训练步骤中,神经网络的输入为采样点(X)与

2021-12-17 15:35:43 268

原创 利用麦克斯韦方程构造AI神经网络

用多通道残差网络并结合Sin激活函数,在该问题的模拟中取得了相比其他方法更高的精度。该神经网络的结构如下图所示:方程表达为单尺度网络的基础结构由多层残差全连接网络构成,指数通道的多尺度网络实现如下:代码如下:class MultiScaleFCCell(nn.Cell):def __init__(self,in_channel,out_channel,...

2021-12-17 15:30:25 1031

原创 点源时域麦克斯韦方程AI求解

人工智能技术的蓬勃发展为科学计算提供了新的范式。MindElec套件提供了物理驱动和数据驱动的AI方法。物理驱动的AI方法结合物理方程和初边界条件进行模型的训练,相比于数据驱动而言,其优势在于无需监督数据。麦克斯韦方程组有源麦克斯韦方程是电磁仿真的经典控制方程,它是一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程组,具体形式如下:其中ϵ,μϵ,μ分别是介质的绝对介电常数、绝对磁导率。J(x,t)J(x,t)是电磁仿真过程中的激励源,通常表现为端口脉冲的形式。这在数学意义上近似.

2021-12-17 14:27:06 558

原创 MindSpore的基础功能

配置运行信息MindSpore通过context.set_context来配置运行需要的信息,如运行模式、后端信息、硬件等信息。导入context模块,配置运行需要的信息。代码如下:import osimport argparsefrom mindspore import contextparser = argparse.ArgumentParser(description='MindSpore LeNet Example')parser.add_argument('

2021-12-17 14:15:57 660

原创 模拟新型冠状病毒Delta变异毒株

概述将展示如何通过MindSPONGE对新型冠状病毒棘突蛋白S1和人类受体蛋白ACE2进行分子动力学模拟,并在模拟得到的轨迹中分析两个蛋白的相互作用,从而获得揭示突变导致新冠病毒传播力和免疫逃逸能力变化的分子机制的重要信息,为新冠肺炎抗体和疫苗的理性设计提供辅助。背景介绍新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19),简称“新冠肺炎”, 是指2019新型冠状病毒感染导致的肺炎。自2019年12月湖北省武汉市部分医院陆续发现了多例有华南海鲜市场暴露史的不明

2021-12-17 14:08:11 454

原创 高精度量子化学计算

在对分子构象进了充分的抽样之后,就可以在其中随机抽取若干构象进行高精度量子化学计算。sander程序得到的轨迹文件后缀名是.nc,使用MDAnalysis这个工具包,就可以在Python中读取对应的坐标文件。例如,使用下面的脚本就可以将nc文件中的坐标转换为numpy数组:代码如下:import numpy as npimport MDAnalysis as mdaparmfile = 'cba.prmtop'nfile = 4xyz = []for idx in ran

2021-12-17 13:54:57 1036

原创 基于AI分子力场模拟分子动力学

概述本教程将展示如何通过Cybertron架构的AI分子力场进行分子动力学模拟, 模拟经典的克莱森重排反应。背景介绍在分子动力学MD(molecular dynamics)模拟中,分子力场(force field)用于描述分子不同的构型和构象所产生的能量和力,通常将体系的势能(potential)U(R)描述为关于体系中各个原子的坐标R的函数,而每个原子所受到的力F(R)等于势能U(R)对原子坐标R偏导数的负数:代数如下:在传统的MD模拟中,体系的势能函数通常使用两种..

2021-12-17 13:42:16 1239

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除