自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(646)
  • 收藏
  • 关注

原创 从DeepSeek 的爆火看 AI,应用的新范式和大模型从业者的未来

鲁为民博士清华学士,加州理工学院博士中国人工智能最高奖“吴文俊人工智能科学技术奖”2023年获得者刘井平博士华东理工大学副教授复旦大学博士多项研究成果在美团、淘宝、蚂蚁金服、华为等公司进行落地胡箐金智维首席科学家前Meta 旗下LLaMA大模型初创团队核心成员之一前微软技术部门负责人,Exchange online、Azure AI 等产品线研发负责人20年的AI技术研发与应用经验时间:2月22日星期六面向受众:大模型及AI技术人员和爱好者和企业技术主管等。

2025-02-21 16:00:14 501

原创 GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比GraphRAG高,仅在单一数据集上进行了评测,不过优化思路可以借鉴下,比如:双层次检索提高图检索准确性等。

2025-06-12 20:42:13 448

原创 从文本到多模态,Embedding 模型选型指南

通过将原始输入转化为固定维度的高维向量以捕捉语义信息,Embedding(嵌入)模型在构建 RAG、推荐系统,甚至自动驾驶模型训练中都发挥着极为关键的作用。近年来,OpenAI、Meta、Google、阿里、腾讯等科技巨头纷纷加大对 Embedding 模型研发的投入。以 OpenA I为例,其最新推出的 text-embedding-3-small 模型能够生成1536维向量,在保持高语义表达能力的同时,实现了更低的延迟和更小的模型体积,非常适合对性能要求较高的大规模语义检索场景。阿里和腾讯最近也推出了

2025-06-11 18:53:14 498

原创 模型在线对齐新范式:不搜索,只采样,效果反超DPO

一句话概括,这篇论文戳破了“卷”就能解决一切的神话,别再搞“题海战术”了,大模型需要的是“高质量漫步”,而不是“低质量狂奔”。

2025-06-10 19:53:33 747

原创 医疗大模型的生意经:厂商大模型一体机卖爆,医院实际使用场景却少

今年年初,国产大模型DeepSeek横空出世,并在医疗体系内掀起了巨大声浪。行业里几乎每天都有不同医院官宣接入DeepSeek大模型的消息发布,从最初的“全省首家”到后来的“全市80多家二级以上公立医院全部接入”。据不完全统计,3个多月时间里,国内已有上千家医院完成DeepSeek大模型在院端的本地化部署。

2025-06-09 21:27:25 894

原创 集齐Agent、KG、多模态的AFAC金融智能创新大赛来袭

在金融科技飞速发展的今天,一场汇聚顶尖智慧与创新力量的赛事正火热招募中!这就是由上海市科学技术委员会指导,北京大学、复旦大学、浙江大学、上海交通大学、招商银行、英伟达等国内外20多家顶尖高校、学术机构和金融科技企业联合发起的“AFAC2025金融智能创新大赛”!

2025-06-09 20:21:20 940

原创 如何构建一个简单的图谱式 RAG 应用

知识图谱( KGs)和大语言模型(LLMs)可谓是天作之合。这两种技术之间的互补性,但简而言之就是, LLM 的一些主要弱点,比如它们是黑箱模型、在事实知识方面表现不佳,恰恰是知识图谱最擅长的领域。知识图谱本质上是“事实的集合”,而且完全可解释。

2025-06-07 19:07:41 934

原创 阿里Qwen3一口气开源多个向量&排序模型,冲!

今天,阿里正式开源了**Qwen3-Embedding**和**Qwen3-Reranker**系列——为多语言文本嵌入和相关性排序树立了新的标杆!

2025-06-06 19:10:02 915

原创 快速理解热门LLM大语言模型

本文尽量用最简单的方式, 帮读者理解 LLM, Transformer, Prompt, Function calling, MCP, Agent, A2A 等这些基本概念

2025-06-05 18:58:38 963

原创 视觉感知RAG × 多模态推理 × 强化学习 = VRAG-RL

在数字化时代,视觉信息在知识传递和决策支持中的重要性日益凸显。然而,传统的检索增强型生成(RAG)方法在处理视觉丰富信息时面临着诸多挑战。一方面,传统的基于文本的方法无法处理视觉相关数据;另一方面,现有的视觉 RAG 方法受限于定义的固定流程,难以有效激活模型的推理能力。

2025-06-04 20:25:38 908

原创 AI研究丨互联网女王报告:AI大模型的商业化真相

AI大模型的崛起引发了一场前所未有的资本竞赛。巨额资金在“看得见能力、看不见利润”的背景下疯狂涌入。但这种“先亏后赢”的故事,并非第一次在硅谷上演。

2025-06-03 20:23:31 748

原创 GE-Chat:一种图增强的RAG框架,用于大模型的证据响应生成

大型语言模型现在是人类决策过程中的关键助手。然而,一个常见的附言似乎总是出现:“大型语言模型可能会犯错。对重要信息要格外小心。”这指出了大型语言模型并非所有输出都可靠,用户必须手动评估它们。随着幻觉响应的出现,常常伴随着看似合理的解释,使得问题变得更加复杂,并在用户中引发信任问题。为了解决这一问题,本文提出了GE-Chat,一种知识图增强的检索增强生成框架,以提供基于证据的响应生成。具体来说,当用户上传一份材料文档时,会创建一个知识图谱,这有助于构建一个检索增强的代理,用超出其训练语料库之外的额外知识来增强

2025-05-30 21:08:16 545

原创 阿里这么顶吗,IDE都出来了!

真是没想到,大模型发展到现在,重头戏竟然是 AI 编程领域。这不,阿里的 AI IDE 也上线了,我也是第一时间就吃上了螃蟹,香,实在是太香了。

2025-05-30 20:14:57 267

原创 Graph RAG框架、基本工具和实际用例

- RAG结合检索模型和生成模型,弥合静态知识库与动态实时数据之间的差距。- 通过动态检索确保生成内容的准确性和时效性。- 混合检索方法(关键词搜索与语义搜索结合)优化了查询速度与相关性。

2025-05-29 18:48:09 829

原创 大模型入门指南 - Prompt Engineering:小白也能看懂的“提示词工程”全解析

当你说“随便弄杯喝的”,大模型可能端出板蓝根泡咖啡的黑暗料理;但当你精准描述“少冰三分糖的杨枝甘露加脆波波”,它才会秒变资深奶茶师。这背后的本质差异,在于是否用提示词搭建起“人类需求”与“机器语言”的精准翻译通道。

2025-05-28 18:52:41 1003

原创 论文浅尝 | ChainsFormer: “从图到链”的知识图谱数值推理

知识图谱是一种以实体-关系为核心的图结构表示,具有结构化表达、语义关联性强等优势。知识图谱推理旨在挖掘图中潜在的事实与规律,支撑智能决策与知识补全,近年来在智能问答、个性化推荐等任务中发挥了重要作用。然而,主流的图谱推理方法多依赖图结构中的邻居聚合机制,借助GNN 或嵌入模型实现链接预测与知识补全。这类方法虽然在局部结构捕捉方面表现优异,但在面对复杂推理任务时,其瓶颈日益凸显。一方面,其视野往往关注局部,难以捕捉远距离实体间的深层组合逻辑;另一方面,黑箱化的推理决策依赖向量间的相似度计算,缺乏可解释的推理过

2025-05-27 21:47:07 520

原创 AI大模型入门:RAG vs. KAG

KAG (Knowledge Augmented Generation, 知识增强生成**)是基于OpenSPG 引擎和大型语言模型的逻辑推理问答框架,用于构建垂直领域知识库的逻辑推理问答解决方案。

2025-05-27 21:03:26 685

原创 基于DeepSeek大模型的知识库问答系统实现TextToSql业务架构图

基于大模型(DeepSeek)的知识库问答系统工作流程,分为**创建知识库**、**使用知识库**和**大模型基座**三部分,具体分析如下:

2025-05-26 18:47:11 903

原创 巧妙!一个传统技术让国产视觉基础模型直接上大分

咱就是说啊,**视觉基础模型**这块儿,国产AI真就是上了个大分——**Glint-MVT**,来自格灵深瞳的最新成果。

2025-05-24 09:32:45 573

原创 为什么 Qwen3,让我看到了 AI 应用落地的重大利好

最近 Qwen3、Gemini2.5、GPT-4.1 和 Grok-3 等这么密集的有明显新进展的优秀模型发布,要是放到 2 年前,铁定是个炸裂的一个月。

2025-05-23 22:18:49 863

原创 LLM之模型高质量微调指南

论文介绍了 KODCODE,这是一个包含 447K 编程问题的合成数据集,每个问题都配有经过验证的解决方案和单元测试。通过一个三步的流水线方法(问题合成、解决方案和测试生成、后训练数据合成),KODCODE 在多样性和质量上都优于现有的代码数据集。

2025-05-23 21:24:48 934

原创 支持5000+ Server,ScaleMCP为大模型Agents动态同步MCP工具

模型上下文协议(**MCP**)极大地提升了LLM Agents与外部工具和API动态交互的能力。现有的工具选择框架并未整合MCP服务器,**而是严重依赖容易出错的手动更新**,来维护本地的单体工具库,这导致了重复、不一致和低效的问题。此外,当前的方法在调用LLM代理之前就对工具选择进行了抽象化,限制了代理的自主性,并阻碍了在**多轮交互过程中动态重新查询的能力。

2025-05-20 09:29:23 1005

原创 4大AI智能体平台深度对比:Dify、Coze、AutoGen、LangChain,哪款更适合你?

AI智能体(AI Agent)近年来发展迅猛,展现出广阔的应用前景和巨大的商业潜力。不少优秀企业也都推出了自己的AI智能平台,每一家都各具特色,可满足不同用户的需求。

2025-05-19 09:31:27 1119

原创 AI智能体在测试自动化中的作用

当AI不再仅仅是回答你的问题,而是能够主动采取行动并自主行事时,会发生什么呢?AI智能体正在改变在无需人工干预情况下人工智能所能做到的事情。

2025-05-16 16:01:38 1067

原创 Transformer | 一文带你了解Embedding(从传统嵌入方法到大模型Embedding)

Embedding是 LLM 的语义支柱,它可以将原始文本转换为向量形式来方便模型理解**。当你在使用 LLM 帮助您调试代码时,你的输入文本、代码会被转换为高维向量,从而将其中的语义转化成数学关系。

2025-05-16 14:34:32 937

原创 AI大模型应用架构图大全

AI大模型技术全景视图

2025-05-15 14:07:28 963

原创 【AI开发】大模型训练技术简介

在人工智能蓬勃发展的当下,大语言模型(LLM)成为了众多应用的核心驱动力。从智能聊天机器人到复杂的内容生成系统,LLM 的卓越表现令人瞩目。而这背后,大模型的训练过程充满了奥秘。本文将深入探讨 LLM 训练的各个方面,带您揭开其神秘面纱

2025-05-15 09:29:06 967

原创 MCP不像想象的那么简单,MCP+数据库,rag之外的另一种解决方案

MCP于2024年11月25日由Anthropic官方正式提出,在24年2月份cursor添加mcp功能支持的时候,才一下子被广大开发人员面前。3月份的时候,又看到各种推文,当时就想不就是一个协议么?你这个协议又没有经过各方的认可,无非就是在多了一层标准化。不同公司的标准又不一样,就是多写两行代码的事。随着阿里的入局,我才开始重视,然后国内很多公司都开始支持MCP了。

2025-05-14 11:44:33 928

原创 我的RAG开源项目300+star了,十分适合新手入门(日志级详细拆解)

三个月前,我在 Github 上开源的一个 RAG 练手项目,目前已经有了 327 个 star,总共解决了 22 个 issues。结合过去几个月的项目实践,我重新对项目做了轻量化重构,降低资源消耗与部署门槛。

2025-05-14 10:43:46 1006

原创 图像也能通过 RAG 加入知识库啦

我们知道,检索增强生成 RAG 通过整合外部知识库与生成模型,有效缓解了大模型在专业领域的知识局限性。传统的知识库以文本为主,通常依赖于纯文本嵌入来实现语义搜索和内容检索。

2025-05-13 09:28:34 747

原创 AI大模型微调入门基础教程(非常详细),AI大模型微调入门到精通,收藏这一篇就够了!

- 介绍了大模型训练的微调方法,包括prompt tuning、prefix tuning、LoRA、p-tuning和AdaLoRA等。- 介绍了使用deepspeed和LoRA进行大模型训练的相关代码。- 给出了petals的介绍,它可以将模型划分为多个块,每个用户的机器负责其中一块,分摊了计算压力。

2025-05-12 22:04:27 566

原创 这个国产开源RAG项目ChatWiki厉害了,可以搭建企业级AI知识库和微信机器人

ChatWiki是一款国产开源的知识库 AI 问答系统**。系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力。

2025-05-12 20:29:46 996

原创 提示工程,被谷歌这份69页白皮书彻底讲明白了(附原文+拆解)

最近谷歌发布了一份 **69** 页的白皮书,名字很普通:《Prompt Engineering》。但看这个页数,你就知道,不简单。

2025-05-10 09:26:06 946

原创 Dify 搭建私有数据可视化智能体,效果直逼 ChatGPT

我们先一起来看一下ChatGPT如何实现数据可视化结果的呈现。 

2025-05-09 14:20:50 766

原创 一文带你了解RAG(检索增强生成) | 概念理论介绍+ 代码实操

RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。RAG 技术架构图介绍:富文本 主要存储于 txt 文件中,因为排版比较整洁,所以获取方式比较简单【版面分析——富文本txt读取】

2025-05-08 11:02:17 692

原创 医疗大模型微调入门基础教程(非常详细),医疗大模型微调入门到精通,收藏这一篇就够了!

为了维护顾客的信任感,销售人员会采用诸如“帮您查询最新的会员优惠信息”这样的措辞来解释他们的操作,从而降低了顾客的防备心理,并增强了顾客与销售人员之间的互动质量。同时借鉴了ColBERT的思想,当需要更高粒度的嵌入时,对文档和查询中的每个标记使用受上下文影响的嵌入,以获得精细的查询-文档相似性分数。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

2025-05-07 10:21:54 927

原创 NVIDIA发布最强开源模型,效果和速度全面超越DeepSeek R1

NVIDIA最新推出的Llama-Nemotron系列,堪称开源界的“最强大脑”。这个模型家族不仅能解答博士级数理难题,还能像老司机一样根据需求切换“省电模式”和“烧脑模式”。论文:Llama-Nemotron: Efficient Reasoning Models链接:https://arxiv.org/pdf/2505.00949最劲爆的是,旗舰款LN-Ultra(2530亿参数)在权威测评中碾压DeepSeek-R1等顶尖模型,但运行效率反而更高——就像用五菱宏光的油耗开出了法拉利的速度!

2025-05-06 19:40:38 943

原创 RAG检索系统的两大核心利器——Embedding模型和Rerank模型

在RAG系统中,有两个非常重要的模型一个是Embedding模型,另一个则是Rerank模型;这两个模型在RAG中扮演着重要角色。Embedding模型的作用是把数据向量化,通过降维的方式,使得可以通过欧式距离,余弦函数等计算向量之间的相似度,以此来进行相似度检索。而Rerank的作用是在Embedding检索的基础之上,进行更加准确的数据筛选;如果说Embedding模型进行的是一维筛选,那么Rerank模型就是从多个维度进行筛选。Embedding模型和Rerank模型。

2025-05-05 19:59:43 1043

原创 【AI-智算】DeepSeek-R1 满血版推理集群优化 & H100

性能提升:优化后在低并发(1-64个请求)时,TTFT、TPOT和E2E Latency均有小幅降低(约5%-10%),TPS略有提升。中高并发(128-256)时,TPS峰值提升约32%(1155.78 vs 1533.08),延迟增长受控。并发承载能力:优化后系统对高并发的适应性增强,512个请求时的性能下降幅度减小(TPS从1025.71降至743.02,下降约28%,而优化前无明显峰值)

2025-04-30 20:13:09 995

原创 Nature Medicine综述:AI药物研发最新进展

特性的有价值的工具。例如,拜耳的计算机模拟ADMET平台使用随机森林和支持向量机等机器学习技术,并使用环状扩展连接指纹等描述符,以确保准确性和相关性。过去几十年中,已经开发了用于ADMET预测的各种描述符。然而,这些基于特征的方法中涉及的特征工程仍然复杂,并限制了通用性和灵活性。深度学习现在推动着ADMET预测,从简单的输入数据中自动提取有意义的特征。

2025-04-29 20:07:37 1471

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除