阿里这么顶吗,IDE都出来了!

真是没想到,大模型发展到现在,重头戏竟然是 AI 编程领域。这不,阿里的 AI IDE 也上线了,我也是第一时间就吃上了螃蟹,香,实在是太香了。

img

大家可以通过下面的链接下载对应版本体验哦。

https://help.aliyun.com/zh/lingma/changelogs-of-lingma-ide

img

讲句良心话,我已经习惯了在 IDEA 中使用阿里的通义灵码插件,尤其是读源码方面,是真的能解决我的痛点。

但阿里显然比我更有雄心壮志,毕竟单纯做插件有太多的限制,比如说内存使用上,没办法去压榨硬件的能力。于是就索性自己做了,主打一个开箱即用,无需安装插件即可体验高效、智能的编程体验。

况且 Cursor 的成功有目共睹,其核心就是开源的 VSCode 和植入的 Claude 大模型。

那阿里本身就有自己的大模型通义千问,Qwen3 的口碑更是响当当,参数量仅为 DeepSeek-R1 的 1/3,对简单需求可低算力“秒回”,对复杂问题可多步骤“深度思考”。

img

自己来做 IDE 显然更能发挥出自家大模型的优势,尤其是 Qwen3 的 Agent 和代码能力,以及 MCP,可做的事情无限大。

好,说再多,都不如上手体验一遍,这就带大家体验一下 Lingma IDE 的 AI 能力吧!

这不马上要过端午节了,相信很多小伙伴都会选择出行,那能不能动动嘴利用 Lingma IDE 开发一个智能选票系统呢?

答案是能。

点击【MCP 工具】这里的蓝字,我们先来添加几个 MCP Server。

img

首先是 12306,点击 MCP 广场(魔搭社区已经上架了超多热门的 MCP 服务),输入 12306 关键字,就可以搜索到了,点击【安装】。

img

我这里已经安装过了,在我的服务中可以看到,12306 目前提供的工具有蛮多的,比如说根据城市名查询所有的火车站名称、查询余票信息等。

img

点击【快速体验】这个小图标,Lingma IDE 就会帮我们新建一个智能体的聊天窗口,基于 qwen3。

img

很快,我们就可以看到 Lingma IDE 开始工作了,它会帮我们调用 12306 的 MCP,然后查询北京到上海的车票信息。

img

不过这个日期,竟然是 23 年的😄,一时间以为自己穿越了。

无伤大雅,我们直接来这么一句:“5月31日从洛阳跑去杭州,请帮我查询一下余票信息”,哇!

真的是太给力了,Lingma IDE 会先调用 get-station-code-of-citys,参数为洛阳,等我确认后会再查询杭州的编码,之后调用 get-tickets ,参数为 5 月 31 日,以及洛阳和杭州的城市编码。

img

结果我还专门跑去 12306 官网确认了一下,准确无误,哈哈。

img

整个过程非常丝滑,用了不到 20 秒,太快了呀!我录个屏,大家感受一下。

我们继续,成年人,懒得动脑子,不想做选择题,请直接帮我选好票。

我想坐高铁二等座,车票报销金额限制在650元以内,我大概8点左右出发,请帮我选择合适的列车

img

再查询一下 G3198 途径的站点。

img

然后我们来结合高德地图的 MCP,做一个途径站点的地图标注。

这里需要我们先去高德地图申请 API key,我这里截个图大家做个参考。

img

记住这个 key,回到 Lingma IDE,添加高德地图的 MCP Server。

img

记得在这里替换你的 API key。

img

配置成功后,我们回到 chat 窗口,准备调用高德地图 MCP 生成站点地图。

请将 G3198 途径站点信息嵌入到网页中,帮我生成一段高德地图JSAPI代码, 实现地图上标记出来途径的站点信息,并且以箭头图标的形式标记, 各站点需要连成线,并且鼠标放到图标上可以显示到达时间,输出为yb.html

不出意外的话,你会看到这个文件。

img

但直接打开的话,看到的是空白页,因为高德地图的 API Key 是没办法提供给模型的,我们直接手动改掉它。

img

保存后重新打开,就可以看到站点地图了。

img

那借助腾讯的 edgeone-pages-mcp-server,还可以将本地的网页一键发布到网络上。那需要我们再添加一个 edgeone-pages 的 MCP。

img

OK,再次回到 chat 窗口,输入一键发布 yb.html,就能看到 Lingma IDE 开始调用 edgeone-pages-mcp-server 了。

img

点击蓝色字体,就可以在联网的情况下看到站点地图了。

img

好,我们在此基础上,添点油加点醋,搞一个沿途风光的精美网页。提示词我借用好朋友苍何的,在此基础上做了一些调整和优化。

帮我基于沿途站点,做一个网页,要求介绍站点的知名景点,特色美食,并按照一下要求:

  1. 采用 Bento Grid 设计:模块化分区,图片、文字、数字有序排布,形成统一的网格系统。
  2. 强调视觉反差:中文主标题使用超大粗体字体(如站点名),英文说明使用较小灰色点缀文字(如景点名/介绍),形成强烈对比。
  3. 使用简洁勾线图元素(如地图图标、食物图标、天气图标等)作为配图或数据图形,风格简约科技感。
  4. 背景和强调色:使用高亮主题色(如荧光蓝、紫、电光绿等)搭配自身透明度渐变增强科技感
  5. 数据可视化模块:可引用在线图表组件(如 Chart.js / ECharts)但必须重写样式以统一视觉风格

然后我们就看到了这样的网页,是不是很不错?有一点遗憾的是郑州东站的图片没有生成出来。

img

我们直接添加一个通义万相的 MCP,帮我们生成一张。

img

然后我们在 chat 中告诉 Lingma IDE,“郑州东站的图片也没有生成出来呢”,它就会丝滑调用通义万相的 MCP 帮我们生成一张,并提示我们审查对应的代码变更。

img

OK,点击【接受】,Lingma IDE 会自动帮我们保存到 guide.html,打开看一下。

img

这下真的舒服了,郑州算是一座新城,确实和洛阳龙门的风格不一样,一个古色古香,一个现代摩登。

不知道大家有没有感受到 AI 的进化?

开发一个智能的 AI 选票系统,竟然如此简单,而这个过程,我们甚至没有敲一行代码。

如果可以的话,我们可以再让 Lingma IDE 帮我们生成一个输入日期、出发站、终点站的页面,配合上面我提到的 MCP Server,就可以很快开发出来了。

至于 Lingma IDE 的其他功能,比如说:

  • 行间代码建议预测,可以基于代码上下文动态预测代码变更
  • AI Rules,通过设定个性化的提示词,在智能问答时生成更加符合个人习惯的代码风格
  • 记忆能力,通过日常对话逐渐养成对你编码习惯的历史记忆,让 AI 越来越懂你

我们这次就不再重点介绍了,大家之前在体验通义灵码插件的时候,应该已经感受过了。

这次的 MCP 工具调用链,让我对 AI 的编程能力有了进一步的期待。

img

它解决了传统 function call 的平台依赖问题,提供了更统一、开放、安全、灵活的工具调用机制,让我们开发者真正从中受益。

Lingma IDE v0.1.0 的发布,也让我再次感受到了阿里在 AI 上的决心。不仅要做大模型,还要把大模型落地这件事做好。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值