马斯克旗下xAI大模型,出二代了!
Grok-2测试版发布,小杯Grok-2 mini已经在𝕏平台在线可玩。
马斯克还以谜语人的形式,揭晓了困扰大模型圈一个多月的秘密:
原来Lmsys大模型竞技场上的神秘匿名模型sus-column-r,真身就是Grok-2。
sus-column-r在排行榜上积累了1万多人类投票,已经与GPT-4o的API版并列第三。
在xAI自己的内部测试中,Grok-2在常识(MMLU、MMLU-Pro)、数学竞赛问题 (MATH)、研究生水平科学知识 (GPQA)等领域与其他前沿模型相媲美。
另外Grok-2最擅长基于视觉的任务,在视觉数学推理 (MathVista) 达到SOTA。
不过这个图的排版可就有点心机在里面了:把分数最高的GPT-4o、Claude-3.5-Sonnet放得离自己远一些。
光看分数还是抽象,下面就进入一手实测环节。
一手实测Grok-2
如果你是𝕏/推特平台付费用户,可以直接进入Grok频道试玩。不花钱的话也可以到Lmsys大模型竞技场选择sus-column-r试玩。
而且付费用户反倒只能玩到小杯mini版,免费用户能玩大杯,也是很厚到了**。**
由于Grok-2可以访问𝕏上的实时数据,可以直接让他总结当天的新闻,开启趣味模式的话还可以附赠吐槽。
付费版本还接入了最新开源AI生图模型Flux.1,会把中文提示词翻译成英文理解。
点进主页上的“安利一个奇幻游戏”问题示例,可以看到它先推荐了《博德之门3》,并从剧情、人物自定义、游戏机制、世界塑造、幽默元素和玩家社区几个角度做点评,很好的把握了游戏的亮点。
此时可以直接换中文继续提问。
Grok-2同样了解《黑神话:悟空》这款还没发售的游戏,准确说出发售日期在8月20日、使用的虚幻5引擎,并且总结了𝕏上网友的讨论。
还在最后附带了网友的帖子,可以点进去参与讨论,与整个平台的功能整合已经到位了。
不过由于𝕏上只有mini版模型,接下来上强度测试我们移步大模型竞技场,还可以与GPT-4o来一场捉对pk。
在最近流行的智商检测问题**“9.9和9.11哪个大”**上,Grok-2(sus-column-r)表现碾压ChatGPT最新版本。
不过另一项流行测试**“strawberry中有几个r”**问题上,两者都还是没能通过。(多试几次两者都有小概率答对)。
更严肃一些的陷阱题**“以下哪支蜡烛是最先被吹灭的”**中,Grok-2比ChatGPT稍有进步。
考点是最先被吹灭的蜡烛剩下的部分更长(正确答案3),ChatGPT错误的理解成最短的,Grok-2思路是对的但是数哪个最长没数对。
对于经典的大模型弱点“逆转诅咒”问题,两者似乎都以某种方式克服了。不仅能正着回答“汤姆克鲁斯的母亲是谁”,也能倒过来回答数据出现频率更少的“Mary Lee Pfeiffer的儿子是汤姆克鲁斯”。
(当然不排除只是成为经典问题之后,相关数据更多了。)
马斯克大模型升级,牺牲特斯拉换的
测试先告一段落,可以看出Grok-2对比上一代Grok-1.5有了很大进步。
背后马斯克可是,花费了大量资源和人力。
比如有新加入xAI的研究员表示,能用10万卡集群做研究,比起在学校里可怜的资源爽太多了。
但是有一群人可不满意了:特斯拉股东。
根据华尔街日报消息,马斯克持续把人才、数据和GPU资源从特斯拉向xAI转移。
目前为止,xAI已经雇佣了至少11名曾在特斯拉工作过的员工,其中六名直接在Autopilot团队工作过。
原本为特斯拉保留的GPU订单,马斯克也要求英伟达优先供应xAI。
马斯克还公开谈论了特斯拉收集的大量视觉数据,他表示这些数据可以作为训练xAI模型的资源。
至少三位特斯拉股东因为这事把马斯克给告了,声称将资源转移到xAI损害了特斯拉投资者的利益。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。