独家:2024年1-11月份金融行业大模型中标项目盘点,百度第一

2024年,大模型进入产业落地爆发期。作为数字化程度最为领先的行业之一,金融行业大模型落地速度也在显著提速。

目前,金融机构对大模型的应用态度非常积极。一个重要的例证是,银行、保险、证券等在内金融机构发布的大模型招投标项目数量相比前年初的几个月出现了明显增长。

2024年1-11月份,智能超参数统计到了100多个金融机构发起的大模型相关采购中标项目。从中,我们可以一窥大模型技术在金融行业的最新落地进展。

金融行业大模型落地显著提速,百度领跑厂商中标榜

2024年1-11月份,我们统计到103个金融行业大模型中标项目,其中39个未披露中标金额(为便于统计,中标金额标注为0元),其余64个项目披露中标金额为20083.58万元。

从季度统计的中标项目数量和金额来看,今年下半年金融行业大模型落地显著提速。第四季度,我们仅统计了2个月的数据,但中标项目数量已经逼近第三季度,并且中标金额创下新高。

随着金融行业大模型中标项目数量达到一定规模,行业的领军厂商也逐渐显现。在智能超参数长期跟踪的6家知名通用大模型厂商中,百度表现突出,在主流大模型厂商中,拿下最关键的中标项目数量、中标金额两项第一。科大讯飞紧随其后,项目数量和中标金额都排名第二。两家厂商形成市场上领先优势明显的头部企业。

在两家企业之后,其他4家厂商,智谱AI 、火山引擎、阿里云、腾讯云则项目相对较少,成为市场上的第二梯队。值得注意的是,以项目数据来看,可以进入第二梯队的厂商众多,华讯网络、南天电子、深擎科技、可利邦等厂商也都有3个中标的金融大模型相关项目。

大模型集中落地金融行业四大应用场景

从2024年下半年开始,金融行业大模型中标项目数量开始快速增长,显示大模型技术在金融行业的加速渗透。以中标项目数量计算,金融行业能够稳居前五大行业,其余四个行业是教科、通信、能源、政务。

虽然金融机构的采购预算相对宽裕,但目前金融行业大模型中标项目的金额整体上看普遍还不够大。排除未披露金额的项目后,其余项目披露金额的中位数在142.8万元,比全行业略高一些。

从项目数量来看,应用类项目 (其中可能包含算力、大模型等)数量最多(64个),占比62%;大模型类项目(16个),数量占比16%,算力类项目22个,数量占比21%,数据类项目占比最少。

从披露金额来看,应用类项目披露的金额占比也是排名第一,算力类占比第二,大模型类占比第三,数据类项目的占比最低。

应用类项目数量和金额占比最多,表明金融机构更多的注意力聚焦在大模型技术在具体业务场景中的落地。而数据类项目数量和金额较少,这可能跟金融机构本身数据治理就较为领先和规范有关系。

在大模型类项目中,一个明显的趋势是越来越多的金融机构在建设大模型底座或者AI中台。这意味着大模型在金融机构中越来越重要的角色,并且可能会渗透到越来越多的业务场景之中。

所有应用类项目根据场景进行进一步细化,智能编程(13个)排名第一,但是其跟业务场景关联性较小。在跟业务紧密相关的场景中,知识平台&知识生成 (12个)、数字人&客服( 11个 )、智能审核(5个)排名前三。

在知识平台建设这个场景上,百度目前中标案例较多。以泰康保险为例,该企业通过基于百度智能云知识管理平台“甄知”打造了私有化、新一代的泰康知识中台,把泰康过去沉淀的行业知识、多源异构数据接入进来,基于大模型能力,将企业知识在内部更高效地流动,内勤工作人员可以快速获取公司最新的福利制度、通知公告,保险代理人则可以实时获取专业保险理赔建议,获取最新保险政策等。

银行业领跑金融行业大模型创新

在我们统计到的103个金融行业大模型中标项目中,覆盖金融机构类型越来越多,其中包括银行、保险、证券、金科公司、交易所、消金、监管机构等。

从数量上看,银行类机构发起的大模型相关采购项目数量最多(58个),占比达到 57%,其次是证券机构(15个),保险(13个),其他金融机构(17个)。披露的中标金额占比上来看,银行、证券稳居前两名。

从大模型项目的建设目标来看,目前大模型的落地尝试更多聚焦在金融机构的对内赋能上,比如加快合同的智能审核、企业知识高效获取与分享、提升智能运维效率等,但是也能看到部分企业开始尝试利用智能体进行一些核心业务上以前做不到的创新。

以保险行业为例,百度智能云基于10月新发布的工作流Agent探索、落地车险续保售前数字员工。过去,车险续保的工作指导包含大量流程、子流程、文档等内容,优秀销售人员稀缺,且培养周期往往长达一到两年。基于工作流Agent开发金牌销售数字员工,则最快可以在1小时内完成、上线,能够大幅提升企业车险业务的核心生产力。

目前来看,金融机构对于大模型技术的采用还处于智能风控、营销、客服、投顾等少数场景测试的阶段,一旦价值明确或者投资回报率可观,大模型技术可能才会逐渐深入到更多核心业务之中。当然,这个持续渗透的过程,还受到大模型技术进一步成熟,安全性提升,以及行业规范不断完善、监管政策明朗等因素影响。

最终,大模型在金融行业要真正发挥比较大的业务价值,还是得在直接面向客户的核心领域和场景里面,跟场景进行深度融合。如果只是泛泛地谈金融大模型,那就做不到有的放矢,并且对内使用和对外使用大模型技术,也有着明显不同的业务规则、数据安全规范、以及监管要求等。

现在可以肯定的一点是,明年将是一个关键时间节点,因为2024年诸多金融行业大模型落地案例将会迎来盘点价值的阶段。如果大模型能够证明价值,那么凭借金融行业机构的强大购买力,2025年将会是大模型在金融行业的爆发时刻。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值