在AI快速发展的今天,垂直领域AI代理(Vertical AI Agent)正逐渐成为颠覆行业的关键驱动力。这些专注于特定行业或场景的AI解决方案,不仅让传统的SaaS(软件即服务)焕发新生,更为创业者和投资人提供了一个绝佳的机会去创建下一个价值数十亿美元的人工智能公司。
根据硅谷科技评论(svtr.ai)创投库,在全球17个AI应用赛道里,500多家垂类AI初创公司,获得知名投资机构的青睐。无论是AI头部投资机构YC、A16Z,还是像SignalFire这样专注技术前沿的风险投资机构,纷纷加码这一赛道,预示着垂直AI正在成为资本市场的下一片热土。
我们认为,垂直领域AI代理与传统SaaS的核心区别在于智能化和深度场景嵌入。与通用型AI工具相比,垂直AI能够深入理解特定行业的专业知识与独特需求,提供精准的定制化解决方案。例如,AI驱动的法律合同审查工具、智能化医疗诊断平台、或用于供应链优化的预测性分析系统,都代表着垂直AI的商业潜力。这些解决方案不仅优化效率,还直接提升客户体验,帮助企业实现从自动化到智能化的跃迁。那么,作为创始人,该如何抓住这股势头,创办下一家价值数十亿美元的人工智能公司呢?
LLM(大型语言模型)的兴起,为垂直AI Agent的发展提供了技术支持。通过强大的语言理解和生成能力,LLM将软件功能与人类操作深度结合。SaaS模式通过云端托管降低了使用门槛和成本,彻底改变了传统软件行业。而垂直AI Agent在SaaS的基础上进一步发展,不仅提供服务,还能通过AI实现操作自动化,显著提高效率并降低企业成本。
在硅谷近期对YC的四位资深投资人——Gary、Jared、Harj和Diana的访谈中,他们围绕SaaS行业的成功经验,深入剖析了垂直领域AI代理(Vertical AI Agent)可能带来的变革性机会,认为这一领域将成为下一个创业风口,甚至可能诞生市值超3000亿美元的公司。
-
Triplebyte:通过自动筛选简历和技术测试,显著降低招聘团队的工作量。
-
Momentic:利用AI进行软件质量测试,自动完成测试用例并生成报告,大幅减少传统QA团队的需求。
-
Outset:通过AI优化调查问卷设计,实时调整问题和答案,提高效率和准确性。
-
Powerhelp:自动化客户支持流程,根据历史记录提供个性化解决方案。
-
Salient:优化汽车贷款催收流程,动态调整催收策略,大幅提升效率。
-
Sweet Spot:专注于政府合同竞标中的重复性行政工作,通过开发AI代理实现了高度自动化,大幅提升效率。
大公司通常优先关注规模更大的市场,而忽视了细分行业中复杂且高度分散的需求。相比之下,初创企业可以专注于解决特定领域的问题。例如,薪资管理平台Gusto通过深刻理解行业法规和细节,取得了巨大成功,而像Google这样的公司很难在此类小众市场上展开高效竞争。
今天,垂直AI代理(Vertical AI Agent)的发展为创业者提供了前所未有的机会。这些AI工具通过利用大型语言模型(LLM)等技术,可以深入特定行业,自动化枯燥且重复的任务,优化效率并降低成本。以下是打造垂直AI代理公司的七个框架,帮助创业者将创新思路付诸实践,并为垂直AI的发展奠定坚实的基础。
1、网络化SaaS:多方平台的新模式
在行业生态系统中,建立连接各类利益相关方的多边平台,可以满足多样化需求。所谓“网络化SaaS”(Networked SaaS),结合了垂直SaaS和市场模式的特点,通过网络效应巩固平台地位。这是一个相对复杂的框架,但也蕴含巨大潜力。传统垂直SaaS、水平SaaS和双边市场模式各有侧重:
-
传统垂直SaaS:为某一行业特定用户群体提供完整的软件解决方案。
-
水平SaaS:推出单一产品,可服务于跨行业的广泛客户。
-
双边市场:简单连接供需双方,使其能够互动和交易。
网络化SaaS的独特优势包括:
-
为行业内不同利益相关者提供针对性的功能。
-
通过统一的工作流解决系统协调问题。
-
不一定从每个利益相关方直接获利,但可以创造整体价值并促进用户增长。
-
构建更高效的价值链,深化用户粘性,令公司在行业内占据核心地位。
案例:Verse Medical
Verse Medical 是一个典型的网络化SaaS实例,其切入点是为医院供应提供AI驱动的订单平台,并逐步扩展到居家护理领域。
-
初始功能:Verse为临床医生提供免费的数字化订单工作流,取代电话和传真方式向医疗供应商下单。
-
为患者提供服务:追踪医疗用品订单,监控患者是否遵守医疗协议,并协助重新订购,同时与临床医生沟通患者状况。
-
为医疗供应商赋能:提供简化的订单管理和市场分析仪表板。
-
为保险公司创造价值:展示干预措施如何改善临床结果、降低再入院率,并深化与保险公司的合作。
2、数据护城河:构建独特的数据优势
通过聚焦独特、行业专属的信息,打造高价值的专有数据集,构建难以被竞争对手复制的核心竞争力。这可以通过以下方式实现:
-
数据聚合:从多个来源整合数据,形成行业洞察。
-
原创数据生成:通过自主开发的工作流或AI驱动的流程,生成独一无二的数据集。
然而,仅仅依靠客户无条件提供数据并不现实。据麦肯锡报告,知识产权侵权是组织采用生成式AI****时的首要顾虑之一,52%的受访者提到了这一问题。因此,帮助客户安全地利用内部数据与AI结合的初创企业具有巨大的市场潜力。数据护城河的构建要点包括:
-
行业专属性:锁定某一行业中独特且高价值的数据点,确保数据的不可替代性。
-
数据安全性:通过加密、隐私保护等技术手段,增强客户信任感,减少数据共享的顾虑。
-
价值提升:利用AI等工具,从数据中挖掘出深度洞察或高精度预测,显著提升客户决策的有效性。
案例:EvenUp
EvenUp 是一个利用数据护城河成功的典型案例。其核心竞争力在于从个人伤害案件中构建的专有和高价值的和解数据集。EvenUp通过安全分析海量案件的和解数据,形成一个远超单个律师事务所所能收集的数据池。基于这些数据,EvenUp为律师和客户提供精确的预测和洞察,使其能够做出更明智的决策。这种深度数据整合能力难以被其他公司复制,构成了强大的竞争优势。
3、一站式平台:AI驱动业务解决方案
AI一站式业务平台(AI-Business-in-a-Box) 提供全面的开箱即用解决方案,帮助个人创建和运营AI驱动的业务,同时简化复杂的后台操作。这一模式通过降低创业门槛,推动了创业民主化,同时满足了日益增长的副业经济需求,并缓解了各行业的劳动力短缺问题。
案例:Grow Therapy
Grow Therapy 是这一模式的一个典型案例,通过技术简化心理治疗师的业务管理,让他们专注于核心专业——心理治疗。平台帮助治疗师处理预约安排、账单管理、合规事务和客户关系管理等复杂任务。治疗师可以节省时间,将更多精力用于提供优质护理服务。AI平台优化了运营效率,使心理健康服务变得更加普及。Grow Therapy通过承担繁琐的后台工作,让治疗师专注于自身的专业领域。
4、工作自动化:而非完全替代人
创业公司应专注于自动化具体的、重复性的工作输出,而非整个岗位。岗位通常涵盖多种难以完全自动化的任务,采用这一有针对性的方法既能提升生产力,又不会威胁到员工的工作安全,这种方式更容易被员工接受,也更容易实施。这一策略具有以下主要优势:
-
通过消除繁琐任务提升工作满意度
-
加速在现有工作流程中的采用与整合
-
随着任务的自动化,具备扩展的潜力
-
提高输出的质量和一致性
案例:EvenUp、Peer AI
EvenUp的法律文档自动化和Peer AI的临床试验患者叙述摘要工具,展示了AI如何应对复杂且耗时的任务。通过自动化生成法律需求文件或冗长的临床研究总结报告,这些工具使专业人士能够专注于战略性工作和客户互动。在许多高风险行业中,工作可能关系到生死,关键在于增强人类的能力,而非完全取代他们。
5、打造全栈AI:提供端到端解决方案
如果面对的是复杂且高价值的问题,并需要深入的专业知识,可以考虑成为端到端的服务提供商,从而在市场中占据并保持优势。借助AI的力量,可以进一步强化竞争壁垒。通过提供全面的解决方案,我们认为垂直领域的AI公司能够实现以下目标:
-
获取更多价值:对整个流程的掌控不仅提高了利润率,还能开拓多种收入来源。
-
确保质量:端到端的监督确保了一致的质量控制,并能快速迭代改进。
-
建立深层关系:与终端用户直接互动,有助于培养更强的客户关系,并建立有价值的反馈闭环。
-
构建更高的进入壁垒:端到端解决方案的复杂性使得竞争对手难以复制。
-
加速创新:完全的掌控权使得新功能的测试与部署能够快速覆盖整个服务体系。
这种方法也面临挑战,例如:
-
运营复杂性增加
-
更高的资本需求
-
可能与现有市场参与者发生冲突
因此,在采用这一战略之前,需要仔细评估公司能力、市场动态以及潜在的投资回报。一个混合模式,即平台提供与部分端到端服务的结合,可能在控制力与运营可控性之间实现平衡。
案例:Justpoint
Justpoint在群体诉讼领域的实践展示了全栈式AI公司如何彻底革新法律流程。通过从案件识别到和解谈判的全流程服务,Justpoint将AI与法律专业知识结合,为客户提供超越传统SaaS的解决方案。这种模式不仅使他们承担起运营责任,还能在结果中共同分担风险并分享收益。
6、初始数据集:整合上下游的抓手
那些整合并构建初始数据集的公司,能够在后续发展中建立天然的竞争优势。这种优势不仅能使公司在流程的上游更好地服务客户,还可能与下游的竞争者PK中获胜。
案例:Stampli
Stampli,在应付账款领域很好地体现了这一策略。他们的AI驱动平台Billy the Bot能够捕获并处理发票数据(输入A),触发审批流程(动作A),随后实现付款(动作B)。通过掌控起点数据集(发票信息),Stampli可以在后续操作中实现增值服务,例如:
-
高级分析与报告功能
-
供应商管理工具
-
集成支付解决方案(Stampli Direct Pay)
通过将这些传统上割裂的工作流程数字化并优化,Stampli为客户带来了显著的价值,包括减少错误、更快的审批、实时可见性以及改善的供应商关系。这种模式不仅提升了客户体验,还巩固了其市场地位。
7、从边缘切入:渐进式渗透策略
对于新公司来说,直接切入客户业务的核心流程往往非常困难。这些核心领域通常受到严格审查、充分优化且高度保护。因此,远离业务核心的流程通常是更容易进入的切入点。
许多这些边缘流程由于规模较小或独特性强,难以轻松实现自动化,并且一线员工通常拥有一定的自主权来处理这些小型决策。然而,这些零散的流程和决策总量巨大,与核心流程相比往往优化不足。
案例:Longtail.ai
Longtail.ai的策略很好地体现了这一点。他们起初专注于优化航空公司“长尾”航线的定价——这些航线因流量太小,航空公司无法投入人力定价分析进行优化。随着时间推移,客户主动将Longtail引入更大价值的“中尾”航线以及其他高价值服务中。
通过从边缘需求入手,逐步赢得客户信任,Longtail.ai成功进入了客户业务的更核心领域。这种策略不仅降低了初期进入壁垒,还为企业的服务拓展创造了更多机会。
全文总结
无论是在销售、客服还是金融等垂直领域,AI代理的潜力已经初现,但未来的竞争将更加激烈。创业者只有深刻理解行业需求,构建数据和技术壁垒,才能在这个价值数十亿美元的市场中立于不败之地。从枯燥的行政工作到复杂的行业场景,垂直AI代理正在将“不可能”变为现实。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。