摘要
近期大模型进展极大地革新了临床诊疗领域,提供了改善各类临床领域诊断精度和治疗效果的新方法,从而推动了精准医疗的追求。多器官和多模态数据集的日益丰富加速了大规模医疗多模态基础模型(MMFMs)的发展。这些模型以其强大的泛化能力和丰富的表征能力而闻名,正越来越多地被用于解决从早期诊断到个性化治疗策略的广泛临床任务。本综述全面分析了多模态基础模型(MMFMs)的最新发展,重点关注三个关键方面:数据集、模型架构和临床应用。我们还探讨了优化多模态表征的挑战与机遇,并讨论了这些进展如何通过提高患者成果和更高效的临床工作流程来塑造医疗保健的未来。
核心速览
研究背景
-
研究问题:这篇文章要解决的问题是如何利用多模态基础模型(MMFMs)在临床诊断和治疗中的应用,解决现有技术在这些领域的局限性和挑战。
-
研究难点:该问题的研究难点包括:数据集的多模态性、模型架构的复杂性以及临床应用的实际挑战。
-
相关工作:该问题的研究相关工作包括自然语言处理(NLP)中的基础模型(如BERT、CLIP和DALL-E),以及医学影像分析中的大规模多模态模型(如MMFMs)。
研究方法
这篇论文提出了医疗多模态基础模型(MMFMs)用于解决临床诊断和治疗中的复杂问题。具体来说,
-
数据集:首先,论文分析了用于训练MMFMs的大规模数据集,探讨了数据集的多样性和规模对模型性能的影响。数据集包括文本数据集(如MedNLI、SEER、MIMIC-III)、医学影像数据集(如MC-CXR& SZ-CXR、CBIS-DDSM-CALC&MASS)和图像-文本对数据集(如ROCO、PMC-OA)。
-
模型架构:其次,论文探讨了MMFMs的两种主要类别:MMVFVMs和MMVLFMs。MMVFVMs专注于多模态视觉任务,如不同类型医学图像的集成和处理;MMVLFMs则扩展了多模态方法,结合了视觉和文本数据,从而实现更全面的分析。
-
代理任务:此外,论文详细介绍了MMFMs中的代理任务,包括分割代理任务、生成代理任务、对比代理任务和混合代理任务。这些任务帮助模型捕捉细粒度的特征和跨模态的相关性。
-
对比学习:论文还讨论了对比学习在MMFMs中的应用,通过比较正样本和负样本来学习稳健的特征表示。例如,SimCLR和MoCo是两种常用的对比学习方法。
实验设计
-
数据收集:实验使用了多种公开可用的医学数据集,包括MC-CXR& SZ-CXR、CBIS-DDSM-CALC&MASS、MMR Datasets等。
-
实验设计:实验设计包括对MMFMs进行预训练和微调,以适应不同的下游医学任务,如分割、分类、检测和报告生成。
-
样本选择:选择了包含多种模态数据的样本进行训练,以确保模型的泛化能力。
-
参数配置:在模型训练过程中,使用了不同的优化算法和学习率调度策略,以获得最佳性能。
结果与分析
-
分割任务:在分割任务中,MedSAM和SAM-Med2D模型在多个医学影像分割竞赛中表现出色,显著优于现有的最先进模型。
-
生成任务:在生成任务中,AutoSMIM和AnatoMask模型在医学图像分割中展示了显著的性能提升,特别是在处理复杂解剖结构和区域时。
-
对比学习:SimCLR和MoCo模型在对比学习中表现出色,特别是在处理多模态医学影像数据时,能够有效捕捉跨模态的特征表示。
-
临床应用:在临床应用中,MMFMs在放射科报告生成、疾病诊断和治疗决策中展示了显著的优势,提高了诊断精度和临床工作效率。
总体结论
这篇论文全面分析了医疗多模态基础模型(MMFMs)的最新进展,探讨了其在临床诊断和治疗中的应用。通过大规模数据集和先进的模型架构,MMFMs在分割、分类、检测和报告生成等任务中展示了显著的性能提升。尽管存在一些挑战,如数据集多样性和计算资源需求,但MMFMs在未来医疗人工智能领域具有巨大的潜力和应用前景。未来的研究应继续优化模型的数据和计算效率,提高其可持续性和可靠性,并在实际临床环境中进行验证。
论文评价
优点与创新
-
全面的综述:论文对医疗多模态基础模型(MMFMs)的最新发展进行了全面分析,涵盖了数据集、模型架构和临床应用三个方面。
-
多样化的数据集:详细介绍了多种大规模的多模态数据集,展示了这些数据集在训练MMFMs中的重要性。
-
创新的模型架构:探讨了多种用于MMFMs的模型架构,特别是视觉-语言基础模型(CLIP及其在医学领域的应用)。
-
广泛的临床应用:分析了MMFMs在放射科报告生成、诊断和治疗决策中的应用,展示了其在提高诊断精度和临床工作效率方面的潜力。
-
详细的挑战与机遇:讨论了优化多模态表示的挑战和机遇,探讨了这些进展如何塑造未来医疗保健的发展方向。
-
未来的研究方向:提出了未来研究的多个关键领域,包括数据和计算、能力和可持续性、可靠性和可解释性、法规与隐私等。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。