日前,“幸福福田”官微显示,福田区推出基于DeepSeek开发的AI数智员工,上线福田区政务大模型2.0版,除了有DeepSeek通用能力外,还结合各部门各单位实际业务流程,量身定制个性化智能体,首批满足240个业务场景使用。
据悉,福田区政务大模型2.0版以全尺寸DeepSeek R1为核心底座,凭借混合专家架构(MoE)与强化学习技术,有效破解传统政务大模型算力消耗高、响应不稳定和专业性不足的痛点,依托国产算力平台实现本地化细分领域训练,确保符合不同行业不同单位的具体需求。
目前,福田区已上线11大类70名“数智员工”,覆盖政务服务全链条。通过240个政务场景终端的精准解析,构建“需求-训练-场景应用-迭代”闭环生态体系,联合Dintal数智员工实现“技术穿透业务”的智能化服务升级,覆盖公文处理、民生服务、应急管理、招商引资等多元场景。个性化定制生成时间从5天压缩至分钟级。公文格式修正准确率超95%,审核时间缩短90%,错误率控制在5%以内。“执法文书生成助手”将执法笔录秒级生成执法文书初稿。民生诉求分拨准确率从70%提升至95%,民情周报日报初稿一键生成。“安全生产助手”生成演练脚本效率提升100倍。“AI招商助手”企业分析筛选效率提升30%,分析时间缩至分钟级。“深小服”数智党务工作者覆盖党务咨询、流程规范各项业务,覆盖全区全体党务工作者。“AI任务督办助手”跨部门任务分派效率提升80%,按时完成率提升25%。
据深圳特区报报道,2月16日,深圳市基于政务云环境面向全市各区各部门正式提供DeepSeek模型应用服务,实现了基于DeepSeek的人工智能政务应用一体化赋能升级。此前,2月10日深圳已完成DeepSeek R1(671B)满血版模型在政务云上的部署,并于2月13日组织开展全市使用操作培训,成为全省首个基于政务云信创环境下全市范围部署应用DeepSeek的城市,也标志着深圳政务服务智能化水平再上新台阶。
此次DeepSeek部署工作是由深圳市政务服务和数据管理局组织开展。据了解,为了一体、集约、高效地推动政务领域人工智能建设和应用,前期,深圳市政务服务和数据管理局已在政务云环境建立了专门的华为昇腾智算专区,并推进人工智能通用支撑平台建设,为各区各部门提供统一的智能算力底座和中台服务支持。DeepSeek开源模型发布后,深圳市积极拥抱新技术,基于已建成的智能算力专区和人工智能中台,快速完成了满血版模型部署,并同时提供面向最终用户和开发人员的两类服务能力,即面向政府工作人员使用的智能问答服务和面向开发人员使用的行业应用服务。
值得一提的是,目前,已有近百家公司接入DeepSeek。
根据万得热门指数,截至2月14日,蛇年开市以来(2月5日起),DeepSeek指数(含接入DeepSeek大模型、以及与DeepSeek有合作的公司)累计涨幅超过48%,呈现断崖式领涨。
截至2月14日,已有98家A股上市公司宣布接入DeepSeek大模型。然而,互动易的信息仍在持续更新中,意味着DeepSeek“朋友圈”将持续扩容。
从行业分布来看,上述98家公司既有属于计算机、传媒、电子、通信的TMT行业,也有包括食品饮料、有色金属、交通运输等传统行业。另外,以券商为主的非银金融行业公司数量也较多,包括广发证券、国金证券、国泰君安等。
截至目前,包括此前的华为云、腾讯云在内,国内的四大云计算巨头——华为云、腾讯云、阿里云以及百度智能云,均已正式宣布对DeepSeek提供支持。
浙商证券研报称,随着DeepSeek推出,AI推理需求大幅度提升,华为生态对DeepSeek的适配性较优。由于DeepSeek系列模型具备显著的低成本、高性能及开源等优势,其推动的“模型平权”有望带动AI产业生态繁荣。近期,国内几大主流云平台、AI基础设施厂商、应用端企业等纷纷宣布接入DeepSeek模型。AI应用有望加速落地,将带来更多的算力需求。
招商证券研报称,近期,DeepSeek所发布的开源模型R1引发全球AI领域的广泛关注,其以高性价比、比肩OpenAI o1模型的出色表现快速出圈,当前国内外多家科技巨头与云厂商已接入DeepSeek。短期DeepSeek-R1可能对于训练侧算力需求产生一定扰动,但将对算力产业链的长期发展带来深远影响。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。