一气呵成-Deepseek爬取上市公司数据,自动对标和财务分析

Deepseek的大火,使得各种基于deepseek垂直领域的应用研究,包括文本分析、医疗应用、工业应用等,审计研究也应积极拥抱AI带来的变革。

网上的审计领域研究文章大部分是都在泛泛而谈,鲜少实际案例。前文笔者的系列文章介绍了审计中的实证研究,那主要是基于文本数据,而审计每天要处理最多的数据则是表格数据。目前看网上无基于Deepseek等大模型的应用研究案例,今天笔者给出一个研究案例。

Deepseek完成三桶油财报数据

采集、年报分析、对标分析和异常分析

基于公网DeepSeek+影刀

作者:数字化审计公众号

强调的是:鉴于本方法是在公网deepseek的分析,建议不要或直接将企业财报或经营数据直接上传。

不过本文引用的是公开数据,不存在数据保密问题。

下面直接给出与deepseek的交流截图,建议报表分析结果太长,我只是截取部分,以展示操作效果。

完整流程如下序列图片展示。

用影刀爬取到的三桶油2019-2023年度年报数据。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 DeepSeek 进行股票数据分析或预测 为了利用 DeepSeek 平台有效地进行股票数据分析或预测,可以遵循以下方法论来构建分析流程: #### 1. 数据收集与准备 选择合适的数据源对于任何成功的量化投资模型至关重要。考虑到 A 股市场的特殊性复杂性,建议采用专业的金融数据服务平台以确保高质量的数据供给[^1]。 这些平台通常提供全面的历史行情记录以及实时更新的信息流,有助于捕捉市场动态变化趋势。通过 API 接口接入所需时间序列资料集,包括但不限于开盘价、收盘价、最高最低价格区间及成交量等指。 #### 2. 特征工程设计 基于所获得的基础财务报表其他宏观经济参数,进一步加工处理成可供机器学习算法使用的特征向量。这可能涉及到计算技术面因子(如移动平均线)、基本面比率(市盈率PE, 市净率PB),甚至引入外部环境变量影响因素评估。 #### 3. 构建预测模型 借助于 DeepSeek 的强大算力资源支持多种流行框架的优势,可以选择适合特定应用场景下的回归或者分类器来进行训练测试循环迭代优化过程。例如长期短期记忆网络(LSTM),随机森林(Random Forests)或是集成学习Boosting系列都是不错的选择方向之一。 #### 4. 结果解释与可视化展示 最后但同样重要的是,将得到的结果转化为易于理解的形式呈现给最终用户群体。这里不仅可以运用传统表格统计描述方式,更推荐制作直观图形化界面辅助决策制定者快速把握关键要点所在之处。像之前提到过的 Pareto 分析法便是一种很好的工具用来识别少数重要的成分对整体效果产生的巨大作用[^3]。 ```python import pandas as pd from matplotlib import pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False data = pd.read_excel(r'F:\AI自媒体内容\AI行业数据分析\poetop50bots中文翻译.xlsx') names = data.iloc[:, 0].values.tolist() ratios = data.iloc[:, 4].values.tolist() fig, ax1 = plt.subplots(figsize=(12,8)) ax2 = ax1.twinx() cumulative_ratios = [sum(ratios[:i+1]) for i in range(len(ratios))] bars = ax1.bar(names, ratios, color='b', alpha=0.7) line, = ax2.plot(names, cumulative_ratios, 'r-', marker='o') for idx, ratio in enumerate(cumulative_ratios): ax2.text(idx, ratio+.01, f'{ratio:.2f}', ha='center') ax1.set_title('Poe平台前50个bots月活用户贡献度分析') ax1.set_xlabel('热门bot名称') ax1.set_ylabel('月活用户占比 (%)') ax2.set_ylim([0, 1]) ax2.yaxis.set_major_locator(plt.MultipleLocator(.1)) plt.tight_layout() output_path = r'F:\AI自媒体内容\AI行业数据分析' plt.savefig(f"{output_path}/poetop50bots贡献度.png") plt.show() print("图像已成功保存并显示.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值