机器学习之常见的分类模型评估指标

本文详细介绍了机器学习中的关键评估指标如精确率、召回率、准确率、错误率和F1函数,以及ROC曲线和PR曲线的概念、计算和应用。特别讨论了不同K值对ROC曲线的影响,并展示了KNN分类器在不同K值下的性能。
摘要由CSDN通过智能技术生成

一.机器学习分类评估模型指标

1 1.1精确率和召回率

 1.2 准确率和错误率

 1.3 F函数

二.ROC曲线和PR曲线 

2.1 ROC曲线

2.1.1 概念

2.1.2 混淆矩阵

2.1.3 ROC曲线如何得到

2.1.4 ROC曲线作用和优点

2.2 PR曲线

2.2.1 PR曲线

2.2.2  PR曲线作用和优点

2.3 ROC曲线和PR曲线的不同

三. 不同K值下的ROC曲线

3.1  不同K值下的ROC曲线

一.机器学习分类评估模型指标:机器学习模型需要有量化的评估指标来评估哪些模型的效果更好。

    1.精确率和召回率

    2.准确率和错误率

    3.F函数

    4.ROC曲线

    5.PR曲线

1.1精确率和召回率

混淆矩阵:

公式:

       上述计算公式中的Positive与Negative是预测标签,True与false代表预测正误;

       精确率和召回率主要用于二分类问题(从其公式推导也可看出),要注意,精确率和召回率是二分类指标,不适用多分类。

精确率:

精准率和准确率看上去有些类似,但是完全不同的两个概念。精准率代表对正样本结果中的预测准确程度,而准确率则代表整体的预测准确程度,既包括正样本,也包括负样本。

 召回率:

召回率的应用场景: 比如拿网贷违约率为例,相对好用户,我们更关心坏用户,不能错放过任何一个坏用户。因为如果我们过多的将坏用户当成好用户,这样后续可能发生的违约金额会远超过好用户偿还的借贷利息金额,造成严重偿失。召回率越高,代表实际坏用户被预测出来的概率越高,它的含义类似:宁可错杀一千,绝不放过一个。

 1.2 准确率和错误率

准确率和错误率既可用于二分类也可用于多分类

对二分类情况时候的计算公式

精确率是一个二分类指标,而准确率能应用于多分类,其计算公式为:
在这里插入图片描述

准确率:

虽然准确率可以判断总的正确率,但是在样本不平衡 的情况下,并不能作为很好的指标来衡量结果。举个简单的例子,比如在一个总样本中,正样本占 90%,负样本占 10%,样本是严重不平衡的。对于这种情况,我们只需要将全部样本预测为正样本即可得到 90% 的高准确率,但实际上我们并没有很用心的分类,只是随便无脑一分而已。这就说明了:由于样本不平衡的问题,导致了得到的高准确率结果含有很大的水分。即如果样本不平衡,准确率就会失效。

 错误率:

错误率是分类问题中一个直接的性能指标,表示分类器错误分类的样本比例。在使用错误率时,需要注意以下几点:

  1. 不平衡数据集:在类别分布不均衡的数据集中,错误率可能无法准确反映模型性能。

  2. 不考虑错误类型:错误率将所有类型的错误等同对待,这在某些场景下可能不合适。

  3. 数据噪声:错误率容易受到数据集中标签错误的噪声影响。

  4. 阈值调整:错误率不适合用于评估分类器的决策阈值调整。

  5. 多分类解释性:在多分类问题中,错误率可能不如其他指标直观。

  6. 模型比较:比较不同模型的错误率时,要确保评估基于相同或可比的数据集。

  7. 综合其他指标:单独使用错误率可能不够,应结合精确度、召回率、F1分数等其他指标来全面评估模型性能。

 1.3 F函数:

F1函数是一个常用指标,F1值是精确率和召回率的调和均值,即
在这里插入图片描述
在这里插入图片描述
F值可泛化为对精确率和召回率赋不同权值进行加权调和:
在这里插入图片描述

二.ROC曲线和PR曲线 

2.1 ROC曲线

2.1.1 概念

接受者操作特性曲线(receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。接受者操作特性曲线就是以虚惊概率为横轴,击中概率为纵轴所组成的坐标图。因此,ROC曲线越靠近坐标的左上角越好。

2.1.2 混淆矩阵
对于一个二分类问题,它有四种情况:
如果一个实例是正类,它被分为正类,记为 真正(True Positive);
如果一个实例是正类,它被分为负类,记为 假负(False Negative);
如果一个实例是负类,它被分为正类,记为 假正(False Positive);
如果一个实例是负类,它被分为负类,记为 真负(True Negative)。

在表格中可以表示为:

真实1    真实0
预测1 TP  FP
预测0   FNTN

由此我没可以引入两个新名词:
真正类率(True Positive Rate, TPR),表示分类器所识别出的 正实例占所有正类的比例,计算公式为:   

另一个是假正类率(False Positive Rate, FPR),表示分类器错认为正类的负实例占所有负类的比例,计算公式为:

2.1.3 ROC曲线如何得到

以疾病检测为例,这是一个有监督的二分类模型,模型对每个样本的预测结果为一个概率值,我们需要从中选取一个阈值来判断健康与否。
定好一个阈值之后,超过此阈值定义为患病,低于此阈值定义为健康,就可以得出混淆矩阵。如果我们将阈值减少0.1,真正类率(TPR)将会增高,相应的假正类率(FPR)也会提高,为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。

ROC曲线(Receiver Operating Characteristic Curve)是反映分类器性能的一个工具,横坐标是假正例率(FPR),纵坐标是真正例率(TPR)。对于给定的分类器,每个不同的阈值(threshold)都会对应一个特定的TPR和FPR值,从而在ROC空间中对应一个点。

  • 阈值最大时:只有最高的预测概率被认定为正类,此时真正的正例和假的正例都没有被捕捉到,即TP(True Positives)和FP(False Positives)都为0,对应的点在ROC空间的原点(0,0)。
  • 阈值最小时:所有样本都被认定为正类,此时没有真正的负例和假的负例,即TN(True Negatives)和FN(False Negatives)都为0,对应的点在ROC空间的右上角(1,1)。

随着阈值逐渐增加,更多的样本被判定为负类,因此TP和FP的数量会减少,导致TPR和FPR的值也随之减小,ROC曲线上的点向坐标轴左下方移动。

如果我们不是预先设定一系列固定的阈值,而是考虑模型对所有样本预测的概率值,并将这些概率值从高到低排序,然后用每个概率值作为阈值进行判定,就能得到一系列混淆矩阵。对每一个混淆矩阵,我们计算相应的TPR和FPR,将这些点绘制在ROC空间中(以FPR为x轴,TPR为y轴),最终形成的曲线就是ROC曲线。

如果ROC曲线比较光滑,通常意味着模型没有严重的过拟合(overfitting),因为模型在不同的阈值下表现一致。AUC(Area Under the Curve)值表示ROC曲线下的面积,AUC值越大,表明模型的整体性能越好。理想分类器的AUC值为1,而纯随机分类器的AUC值为0.5。

2.1.4 ROC曲线作用和优点

ROC曲线是评估分类器性能的重要工具,它的作用和优点主要包括:

  • 识别能力:ROC曲线可以展示在不同阈值下分类器的识别能力,即真正例率(TPR)与假正例率(FPR)之间的关系。这有助于我们理解分类器在区分正负样本方面的整体表现。
  • 选择诊断界限值:通过ROC曲线,我们可以选择一个最佳的诊断界限值,即确定哪一个阈值最能使分类器的性能达到最优。曲线上最靠近左上角的点通常被认为是最佳临界点,因为它代表了最高的真正例率和最低的假正例率。
  • 比较不同诊断方法:当存在多种诊断方法或分类器时,可以通过将它们的ROC曲线绘制在同一个坐标系中来直观地比较它们对疾病的识别能力。这有助于我们选择对于特定问题最有效的分类方法。
  • 降低数据分布变化的影响:ROC曲线具有很好的稳定性,即使在测试集中正负样本的分布发生变化时,ROC曲线的形状也能够基本保持不变。这一点对于实际应用非常重要,因为在现实世界的数据集中,类别分布往往是不稳定且可能随时间变化的。

2.2 PR曲线

2.2.1 PR曲线

我们以召回率R为横轴、以精确率P为纵轴,能够画出P-R曲线,如下图:

从上图不难发现,precision与Recall的折中(trade off),曲线越靠近右上角性能越好,曲线下的面积叫AP分数,能在一定程度上反应模型的精确率和召回率都很高的比例。但这个值不方便计算,综合考虑精度与召回率一般使用F1函数或者AUC值(因为ROC曲线很容易画,ROC曲线下的面积也比较容易计算).
先看平滑不平滑,在看谁上谁下(同一测试集上),一般来说,上面的比下面的好(红线比黑线好);
F1(计算公式略)当P和R接近就也越大,一般会画连接(0,0)和(1,1)的线,线和PRC重合的地方的F1是这条线最大的F1(光滑的情况下),此时的F1对于P-R曲线就好象AUC对于ROC一样。一个数字比一条线更方便调模型。

2.2.2  PR曲线作用和优点

  • 评估不平衡数据集:在数据集中正负样本分布不均衡时,PR曲线能提供比ROC曲线更加准确的性能评估。因为PR曲线关注的是精确率(Precision)和召回率(Recall),而不是真正例率和假正例率。
  • 关注少数类:当人们更关心少数类(如患病者、欺诈行为等)的识别时,PR曲线更为有用。因为它可以直观地显示出模型在识别少数类方面的性能。
  • 评估模型的保守性与积极性:通过PR曲线,我们可以判断一个模型是更倾向于避免误报(更高的精确率),还是更倾向于捕捉所有可能的正例(更高的召回率)。这有助于我们根据实际需求调整模型的阈值。
  • 适用于特定应用场景:在诸如医疗诊断、欺诈检测等领域,模型需要尽可能多地捕捉到所有相关案例,而不仅仅是区分能力最强的一部分。在这些情况下,PR曲线提供了更有针对性的性能指标。
  • 辅助决策制定:在需要权衡精准率和召回率的应用中,PR曲线可以帮助决策者理解在不同操作阈值下的预期结果,从而做出更加明智的决策。

2.3 ROC曲线和PR曲线的不同

ROC曲线和PR曲线都是用于评估分类器性能的工具,但它们各自适用于不同的场景并有不同的表现方式

首先,我们来理解ROC曲线。ROC曲线通过展示真正例率(TPR)与假正例率(FPR)之间的关系,帮助评估模型在二分类问题中的表现。这种曲线的一个优点是,即使在正负样本分布发生变化时,ROC曲线也能保持稳定。ROC曲线假设正负样本的先验概率相等,因此它通常适用于类别均衡的数据集。

而PR曲线则关注精确率(Precision)和召回率(Recall)。当数据集中正负样本分布不平衡时,PR曲线可以作为ROC曲线的一个替代工具。PR曲线特别适合于那些正样本比例远小于负样本比例的情况。在视觉上,一个好的模型在ROC图上的表现通常是偏左上角的,而在PR曲线中则是偏右上角的。

总的来说,ROC曲线和PR曲线都是评价分类模型性能的有效工具,但它们各自更适合不同的数据分布情况。在实际应用中,根据数据的特点选择最合适的评估方法是非常重要的。

三. 不同K值下的ROC曲线

3.1  不同K值下的ROC曲线

1.导入所需库:导入了numpy、make_classification、train_test_split、KNeighborsClassifier、roc_curve和auc等库。这些库用于生成模拟数据集、划分数据集、创建KNN分类器、计算ROC曲线和AUC值以及绘制图形等操作。

import numpy as np

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import roc_curve, auc

import matplotlib.pyplot as plt

2.创建模拟的分类数据集:使用make_classification函数创建一个包含1000个样本和20个特征的模拟分类数据集。随机种子设置为42,以确保每次运行时生成相同的数据集。

X, y = make_classification(n_samples=1000, n_features=20, random_state=42)

3.划分数据集为训练集和测试集:使用train_test_split函数将数据集划分为训练集和测试集。测试集的大小为原始数据集的30%,即300个样本。随机种子也设置为42,以确保每次运行时划分相同的训练集和测试集。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

4.创建并训练KNN分类器:创建一个KNN分类器对象,设置邻居数为3。然后使用训练集对分类器进行训练。

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)

5.获取模型的概率分数:由于KNN分类器不直接输出概率,但我们可以使用predict_proba方法获取每个样本属于正类的概率分数。这里我们只关心正类的概率分数,所以取第二列的值(索引为1)。

y_scores = knn.predict_proba(X_test)[:, 1]

6.计算ROC曲线的FPR和TPR:使用roc_curve函数计算ROC曲线的假阳性率(FPR)和真阳性率(TPR)。

fpr, tpr, _ = roc_curve(y_test, y_scores)

7.计算ROC曲线下方的面积:使用auc函数计算ROC曲线下方的面积(AUC值),以评估分类器的性能。

roc_auc = auc(fpr, tpr)

plt.figure(figsize=(8, 6))

plt.plot(fpr, tpr, color='darkred', lw=2, label='ROC Curve (AUC = %0.2f)' % roc_auc)

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--', label='Random Guess')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.title('Receiver Operating Characteristic Curve')

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

代码展示:

运行结果:

当n_neighbors=3

当n_neighbors=5时:

当n_neighbors=8时:

当n_neighbors=30时:

通过绘制不同K值(n_neighbors)下的ROC曲线,我们可以看到分类器性能在不同阈值下的变化。理想情况下,我们希望ROC曲线越靠近左上角越好,这意味着在所有可能的阈值下,分类器都能保持较高的真正例率和较低的假正例率。

  • 28
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Pyspark是Apache Spark的一个Python接口,它在大规模数据处理中广泛用于机器学习。对于二分类模型的评价指标,主要有以下几个: 1. **准确率(Accuracy)**:预测正确的样本数占总样本数的比例,是最直观的评估指标。公式为:(TP + TN) / (TP + TN + FP + FN),其中TP(True Positive)表示真正例,TN(True Negative)表示真负例,FP(False Positive)表示假正例,FN(False Negative)表示假负例。 2. **精确率(Precision)**:模型预测为正例且实际为正例的比例,衡量的是模型在预测为正类时的可靠性。公式为:TP / (TP + FP)。 3. **召回率(Recall)**:实际为正例被模型正确预测为正例的比例,衡量的是模型找到所有正例的能力。公式为:TP / (TP + FN)。 4. **F1分数(F1 Score)**:精确率和召回率的调和平均值,综合考虑了两个指标。公式为:2 * Precision * Recall / (Precision + Recall)。 5. **ROC曲线(Receiver Operating Characteristic Curve)**:绘制出真正例率(TPR)与假正例率(FPR)之间的关系,用来评估模型在不同阈值下的性能。 6. **AUC-ROC(Area Under the ROC Curve)**:ROC曲线下的面积,值越大说明模型性能越好,1代表完美分类。 7. **混淆矩阵(Confusion Matrix)**:展示模型预测结果与实际结果的对比,直观地看到分类效果。 8. **交叉验证得分(Cross-validation Score)**:通过将数据集划分为训练集和验证集多次,计算平均得分,避免过拟合或欠拟合的影响。 在选择指标时,需要根据具体业务场景和需求来决定,比如关注模型的准确性、误报率还是查全率等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值