一文读懂智能体(Agent):未来AI的“全能助手”

一、 智能体是什么

智能体究竟是什么?简单来说,智能体是能够自主行动、感知环境、做出决策并与环境交互的智能应用或实体。它就像是一个具备思考和行动能力的数字“小助手”,有着自己的“想法”和 “行动准则”,自主性、持续性和适应性是它的显著特点。

以手机上的智能语音助手为例,当你对它说 “帮我查询明天的天气” 时,它能迅速“听” 到你的指令(感知环境),然后在后台分析处理这条指令(做出决策),接着通过网络搜索获取天气信息,并把结果反馈给你(与环境交互),这就是一个简单的智能体工作过程。再如智能家居系统中的智能摄像头,它时刻 “观察” 着家中的情况,一旦检测到异常(如有人闯入),就会立即向用户发送警报,这也是智能体在发挥作用。

在 2023 年 4 月 7 日,斯坦福大学和谷歌的联合研究团队在论文预印本文库 arXiv 上发表了一篇名为《生成式智能体:人类行为的交互式模拟》的研究论文。他们进行了一个有趣的模拟实验,构建了一个类似《模拟人生》的虚拟小镇 Smallville。在这个小镇中,“生活” 着 25 个生成式智能体。用户可以通过自然语言与这些智能体交互,观察它们的日常生活。比如,用户让一个智能体举办情人节派对,这个智能体就会自主地在接下来的两天里,向其他智能体传播聚会邀请,结交新朋友并邀请他们参加,还能协调大家在正确时间到达派对。这些智能体有着自己的 “记忆” 和 “思考” 能力,它们能记住自己的经历,反思过去并规划未来,就像真实的人类一样在虚拟环境中生活、社交 ,生动地展现了智能体在模拟人类行为和交互方面的潜力。

img

二、 智能体的分类

智能体可以从不同角度进行分类。从功能上,有专注于完成特定任务的任务执行型智能体,像自动完成文档排版的智能工具;有辅助决策的决策制定型智能体,比如为企业投资提供数据分析和决策建议的智能系统;还有管理知识的知识管理型智能体,例如帮助科研人员整理和检索文献资料的智能助手 。

根据学习方式,智能体又可分为监督学习型、无监督学习型和强化学习型。监督学习型智能体在大量有标记的数据中学习,如同学生在老师的指导下学习知识;无监督学习型智能体则在无标记的数据中寻找规律,就像自主探索未知领域的探险家;强化学习型智能体通过与环境交互,根据奖励和惩罚机制来优化自己的行为,如同在游戏中不断尝试以获得高分的玩家。

在应用领域方面,金融领域的智能体能进行风险评估和投资分析;医疗领域的智能体可以辅助医生进行疾病诊断;交通领域的智能体有助于优化交通流量,缓解拥堵 。

如果按照输入模态和技术实现来划分,以操作系统智能体(OS Agent)中的 GUI 智能体为例,它又可细分为基于语言的智能体、基于视觉的智能体、视觉 - 语言混合智能体。基于语言的智能体仅使用 HTML/XML 等文本描述作为输入,就像只通过文字说明书来操作机器的人;基于视觉的智能体仅使用屏幕截图作为输入,如同仅靠观察图像来理解信息;视觉 - 语言混合智能体则同时使用屏幕截图和文本描述作为输入,兼具两者优势,能更全面地理解和处理任务,就像既看图像又看文字说明来完成工作的人 。

三、 智能体的核心能力

现代智能体,特别是 OS/GUI 智能体,为了能更好地完成各种复杂任务,需要具备一系列核心能力。

首先是理解能力,这是智能体解读用户指令、理解任务目标的基础。以办公软件智能体为例,当用户说 “把这个文档里的标题加粗,并且调整字体大小为 16 号”,智能体需要准确理解 “标题”“加粗”“字体大小 16 号” 这些关键信息,才能正确执行任务。MobileFlow 引入的 GUI Chain - of - Thought(CoT)技术,让智能体能够像人类一样进行推理,大大提升了对复杂任务的理解能力。

感知与定位能力也十分关键。对于 GUI 智能体而言,要在复杂的图形界面中准确感知和定位各种元素,比如在一个电商 APP界面中找到 “购物车” 图标并点击。SpiritSight 提出的 Universal Block Parsing(UBP)方法,有效解决了动态高分辨率输入中的歧义问题,提升了智能体的感知与定位能力;MobileFlow的混合视觉编码器支持可变分辨率输入,使其对界面细节的感知更加敏锐 。

规划能力能帮助智能体将复杂任务分解为一系列可执行的步骤。比如完成一个项目策划,智能体需要规划先进行市场调研,再分析竞争对手,然后制定策划方案等步骤。规划方法可分为全局规划和迭代规划,全局规划在任务开始前就规划好完整的操作序列,如同提前制定好详细的旅行攻略;迭代规划则根据环境反馈动态调整操作计划,就像在旅行中根据实际情况随时改变行程安排,MobileFlow 采用的四步法(观察、推理、行动、总结)就是一种有效的迭代规划框架 。

最后是操作能力,这是智能体执行具体行动的能力,涵盖了键盘操作(如文本输入、快捷键使用)、鼠标操作(如点击、拖动)以及各种导航操作(如滚动、翻页、切换标签等)。在自动化测试中,智能体需要通过这些操作来模拟用户行为,对软件进行全面测试 。

四、 目前市场上流行的智能体平台

在智能体这片充满活力的领域中,国内外涌现出了众多优秀的平台和模型,它们各自展现着独特的魅力和价值。

先看国内,百度的文心智能体平台依托百度强大的人工智能技术研发实力,整合了自然语言处理、知识图谱等多种先进技术,为开发者和企业提供一站式的智能体开发与应用解决方案。在这里,开发者可以借助丰富的预训练模型,快速进行微调以适应不同业务场景,大大缩短开发周期;其知识增强能力,借助百度庞大的知识图谱,能让智能体在回答问题时更全面、准确且有深度 。https://agents.baidu.com/center

img

阿里巴巴的魔塔智能体平台聚焦于电商、物流等核心业务场景,并逐步向其他行业拓展。在电商业务中,它大显身手,智能客服能准确理解消费者问题并快速答复,商品推荐智能体可根据用户数据精准推送商品,还融入严格安全机制,保障电商交易安全可靠,在阿里巴巴电商生态系统内与众多产品实现深度整合 。

腾讯元器智能体开放平台秉持开放合作理念,具备灵活架构,支持多种类型智能体开发。它的多模态交互能力十分出色,用户不仅能通过文本对话,还能结合语音、图像等形式实现更自然便捷的人机交互,并且与微信等腾讯社交产品无缝对接,助力智能体应用社交化传播 。

字节跳动的扣子 AI 平台凭借字节跳动在算法、数据等方面的优势,致力于打造通用、高效且智能的智能体开发平台,支持内容创作、智能客服、智能家居等多领域智能体开发,在内容创作辅助方面表现尤为突出,能根据用户提供的关键词、主题等信息快速生成高质量文本内容 。https://www.coze.cn

img

支付宝推出的智能体开发平台 “百宝箱” 也别具特色,商家机构可 0代码、最快 1 分钟创建专属智能体,并一键发布到支付宝小程序、支付宝 App、支小宝 App 等多端。它高效连接服务,与支付宝支付、搜索、小程序等 20 多项经营工具和阵地打通;实现多场景分发,覆盖线上线下多个场景;还聚焦专业智能体,在多行业坚持开放,与行业伙伴及专业机构携手共创 。

Manus,是中国的创业公司Monica发布的全球首款通用Agent(自主智能体)产品。Manus定位于一位性能强大的通用型助手,对于用户不仅仅是提供想法,而是能将想法付诸实践,真正解决问题。Manus作为全球首款真正意义上的通用AI Agent,具备从规划到执行全流程自主完成任务的能力,如撰写报告、制作表格等。它不仅生成想法,更能独立思考并采取行动。以其强大的独立思考、规划并执行复杂任务的能力,直接交付完整成果,展现了前所未有的通用性和执行能力。据团队介绍,Manus在GAIA基准测试中取得了SOTA(State-of-the-Art)的成绩,显示其性能超越OpenAI的同层次大模型。https://manus.monica.cn

img

OpenAI 的 GPTs 构建平台GPT builder 允许用户使用自然语言构建各种 GPTs,无需输入代码,大大降低了 Agent 构建门槛,用户能轻松创建具有特定功能的智能体 。

img

img

微软的 Jarvis 是一站式 AI 智能体,名称源自《钢铁侠》。它将多个 AI 工具整合到单一系统,利用基于大语言模型(如 GPT)的协作框架来规划任务、挑选合适 AI 工具、执行任务并生成响应,还具备多模态能力,能同时理解音频、图像、文本数据,可自动回复邮件并进行规划安排,从不同格式数据中提取具有可操作性的见解 。

GitHub Copilot X 是下一代编程补全工具,基于 OpenAI Codex 模型开发,能理解自然语言,根据编程环境给出提示,自动补全重复性任务,提高编程速度,让拉取请求实现自动化,还能生成测试用例,提升代码质量 。

这些国内外的智能体平台和模型,正不断推动智能体技术的发展和应用,为人们的生活和工作带来更多便利与创新,它们在不同领域的广泛应用,也让我们看到了智能体技术的无限潜力和广阔前景。

五、 技术突破与发展

随着深度学习的进步,尤其是大规模神经网络模型的出现,智能体迎来了重要的发展阶段,开始具备更高级的数据处理和模式识别能力。就像一个学生从只能死记硬背知识,逐渐学会了理解和灵活运用知识 。

以图像识别领域为例,基于深度学习的智能体可以通过大量图像数据的学习,准确识别出各种物体。比如在安防监控中,智能体能够快速识别出人脸、车辆等目标,与早期依靠简单特征匹配的方法相比,准确率和适应性大大提高 。

近年来兴起的大模型技术,更是为智能体提供了前所未有的理解复杂数据和自然语言的能力。大模型凭借其庞大的参数量和强大的学习能力,使得智能体能够更加精准地响应用户需求,执行多样化任务,并在交互中展现更自然的语言理解和生成能力 。

ChatGPT的出现,让人们看到了智能体在自然语言处理方面的巨大进步。它可以与用户进行流畅的对话,回答各种问题,生成高质量的文本,从日常聊天到专业知识解答,从文案创作到代码编写,ChatGPT 都展现出了出色的能力,推动智能体从针对特定任务场景能力迈向具备通用能力的新阶段 。

随着 Gemini 1.5 Pro、GPT-4o、Kimi 等模型在多模态技术上的持续突破,智能体感知端的能力得到进一步提升。它们不仅能理解文本,还能处理图像、音频等多种信息,为智能体在更多领域的应用打开了新的大门,让智能体迎来产业化落地发展的关键阶段 。

六、 智能体的广泛应用

智能体的应用领域极为广泛,几乎涵盖了我们生活的方方面面,它正以强大的功能和独特的优势,为各个领域带来深刻变革,提升效率、优化体验,创造出更多的价值和可能性。

医疗领域

在医疗领域,智能体发挥着至关重要的作用。它就像一位不知疲倦的医学助手,能够快速、准确地分析海量的医疗数据,包括患者的病历、影像资料、实验室检测结果等 。通过这些分析,智能体可以为医生提供极具价值的诊断建议,辅助医生制定个性化的治疗方案。

以癌症诊断为例,早期诊断对于癌症患者的治疗和康复至关重要,但传统的诊断方式存在一定的局限性。而智能体凭借先进的图像识别技术和深度学习算法,能够快速分析医学影像,精准检测出微小的肿瘤病灶,大大提高了早期诊断的准确性 。同时,智能体还能综合考虑患者的基因信息、生理指标等因素,为患者推荐最适合的药物和治疗方法,提高治疗效果,减少副作用,为患者的健康保驾护航 。

交通领域

在交通领域,智能体的应用正引领着一场革命性的变革。智能交通系统中的智能体宛如一位经验丰富的交通指挥官,通过传感器、摄像头等设备,它能够实时监测交通流量、路况信息,然后运用智能算法对这些数据进行分析,从而优化交通信号控制,合理分配道路资源,提高道路通行效率 。

自动驾驶汽车是智能体在交通领域的一个典型应用。它通过多种传感器感知周围环境,如摄像头识别道路标识和障碍物,雷达测量与周围物体的距离等,然后智能体根据这些感知信息,迅速做出决策,控制汽车的行驶速度、方向和刹车等操作,实现安全、高效的行驶 。自动驾驶汽车的出现,不仅可以减少人为因素导致的交通事故,提高交通安全性,还能有效缓解交通拥堵,为人们的出行带来极大的便利 。

工业制造领域

在工业制造领域,智能体正成为推动生产智能化升级的关键力量。它能够实现对工业生产线上设备的智能监控与故障预测,就像为设备配备了一位贴心的 “健康管家” 。

研华的 WISE-AI Agent 智能体平台就是一个很好的例子。该平台通过集成设备数据、历史维修数据与物料数据,构建起强大的维修知识库,并利用大语言模型(LLM)实现智能诊断 。它可以实时监测设备的运行状态,通过对设备运行数据的深入分析,提前预测设备可能出现的故障,并及时发出警报,提醒工作人员进行维护 。这样一来,企业可以提前安排维修计划,准备维修物料,避免设备突发故障导致的生产中断,大大提高了生产效率,降低了维修成本 。

电商领域

在电商领域,智能体为消费者带来了全新的购物体验。它如同一位贴心的购物顾问,能够根据消费者的浏览历史、购买记录、收藏偏好等多维度数据,深入分析消费者的需求和喜好,为消费者提供精准的个性化购物推荐 。

当你在电商平台上浏览商品时,智能体可能会为你推荐一些你感兴趣但尚未发现的商品,这些推荐往往恰到好处,让你更容易找到心仪的物品,节省购物时间和精力 。例如,如果你经常购买运动装备,智能体可能会在运动季来临之前,为你推荐最新款的运动鞋、运动服装以及相关的运动配件,并提供专属的优惠信息,让你感受到个性化服务的贴心与便捷,有效提升了购物体验和满意度 。

教育领域

在教育领域,智能体正逐渐成为学生学习的得力助手。它可以作为智能学习助手,根据学生的学习情况、兴趣爱好、知识掌握程度等因素,为学生量身定制个性化的学习内容和辅导计划 。

当学生在学习过程中遇到问题时,智能体能够像一位耐心的老师,及时给予解答和指导。它还可以根据学生的学习进度和表现,动态调整学习内容和难度,帮助学生查缺补漏,巩固知识,提高学习效率 。比如,对于数学基础薄弱的学生,智能体可以提供针对性的数学练习题和详细的解题思路,帮助学生逐步提高数学能力;对于对历史感兴趣的学生,智能体可以推荐相关的历史书籍、纪录片和在线课程,拓宽学生的知识面 。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值