人工智能
文章平均质量分 93
大模型玖月
这个作者很懒,什么都没留下…
展开
-
玩转大模型之学习笔记 | Transformer,一个神奇的算法模型
我的研究方向是显著性目标检测,毕业论文方向是基于Transformer的显著性目标检测研究,随着Transformer机制在自然语言方向逐渐取得巨大突破,有很多学者都把目光投向了计算机视觉方向,显然Transformer在计算机视觉方向也有巨大进展,带着这样的学习目的,我参加了昇思MindSpore技术公开课,希望对Transformer有一个更加深刻而全面的认识,可以更好地开展我的毕业设计。注意力机制的基本思想是在处理输入序列时,不同位置的信息被赋予不同的权重,以便网络更集中地关注对当前任务有用的部分。原创 2024-04-01 18:00:52 · 618 阅读 · 0 评论 -
从零开始学习大模型-第二章-大模型学习路线
随着技术的进步,大模型如OpenAI的GPT-4和Sora、Google的BERT和Gemini等已经展现出了惊人的能力-从理解和生成自然语言到创造逼真的图像及视频。了解当前主流的大模型,如GPT系列、BERT、Transformer等,学习它们的基本架构和工作原理。学习机器学习的基本概念、算法和模型,如线性回归、决策树、随机森林、支持向量机等。学习如何处理和准备数据,以适应大模型的需要,包括数据清洗、标注和增强等技术。学习模型优化技术,如模型压缩、量化、蒸馏等,以提高模型的效率和性能。原创 2024-04-01 17:54:21 · 355 阅读 · 0 评论