一张图看懂 DeepSeek:满血版、蒸馏版、量化版的区别,如何辨别用的是真“满血版”?

一、DeepSeek主流的版本

满血版、蒸馏版、量化版都是啥?

DeepSeek主要有几下几个版本,也是市面上最主流的。方便大家理解,绘制个表格:

loading

  • 满血版:DeepSeek官方发布的。指的是完整参数版本,拥有最大的参数量(671B或6710亿参数),性能最强,能够处理复杂的推理和长上下文理解任务。 满血版R1基于DeepSeek-V3进一步训练,采用多阶段强化学习技术优化推理能力,无需监督微调(SFT)。在Hugging Face上,只有DeepSeek-R1才是真正的“满血版”。

  • 蒸馏版:DeepSeek官方发布的。是通过知识蒸馏技术压缩大型模型得到的版本,参数量大大减少(1.5B-70B)。在Hugging Face上,带Distill的都是“蒸馏”模型。蒸馏版的底层架构基于阿里Qwen和Meta Llama等开源模型,硬件适配性更高。

  • 量化版:是通过牺牲一部分模型的“精度”,压缩模型的大小。这样就可以减少,运行所需的资源,提高运行的效率。Ollama等第三方提供的本地部署模型多为此类。

需要特别注意的是,虽然Ollama发布的量化版本的参数也有6710亿,但它其实精度不一样,是“量化版”。性能不如官方发布的满血版。

二、如何辨别真假满血版?

从成本供给上分析:现在很多产品都声称接入了DeepSeek-R1,那如何判断是否为满血版呢?其实部署“满血版”是有较高成本的。一般来说,671B参数的两个模型不是普通人用的,而是为云计算供应商或头部互联网公司准备的(经询问内内人士,要部署运行真“满血版”,需要大概250万-300万成本),不适合普通人。从这个角度分析,大厂接入的大多应该都是真“满血版”。

网友提供了有趣的测试:无严格的科学依据,但可以参考试试。提问:一个汉字具有左右结构,左边是木,右边是乞。这个字是什么?

loading

据说只有“满血版”能快速回答正确。

三、哪里能体验到“满血版”DeepSeek?

目前有明确公布自己接入的是“满血版”的应用,列举一些供大家参考:

  • 微信搜索(内测阶段)

  • 腾讯元宝

  • 钉钉

  • 秘塔AI搜索

  • 百度搜索(还“热乎“的,快去体验)

四、最后的话

选择哪个版本的DeepSeek,最终取决于你的实际需求、硬件条件和预算。对于大多数普通用户来说,直接使用官网或在线API可能更方便。 如果对数据隐私有特殊需求,或者需要进行定制化开发,本地部署也是一个可以考虑的选择。

我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4

但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!

❗️为什么你必须了解大模型?

1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍

2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰

3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI

(附深度求索BOSS招聘信息)
在这里插入图片描述

⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
在这里插入图片描述

### DeepSeek 模型本概述 DeepSeek 提供了多种不同配置的模型以适应不同的应用场景和硬件条件。具体来说,满血蒸馏具有显著差异,在性能、资源消耗以及适用场景方面各有特点。 #### 满血特性 满血代表未经任何优化处理的标准模型架构,保留了原始设计中的全部参数量和计算复杂度。这种配置能够提供最高的精度表现,适用于对预测准确性有极高要求的任务环境[^1]。 ```python # 假设这是加载满血模型的伪代码 model_full = load_model('deepseek_full_version') ``` #### 蒸馏特性 相比之下,蒸馏通过知识蒸馏技术从较大的教师网络中提取关键特征并迁移到较小的学生网络上实现压缩。这使得最终得到的小规模学生模型可以在保持一定水平准确率的同时大幅减少推理时间和内存占用,更适合边缘设备或资源受限平台部署需求。 ```python # 这里展示如何加载经过蒸馏后的轻量化模型 model_distilled = load_model('deepseek_distilled_version') ``` #### 性能对比分析 在实际测试环境中,当使用相同的数据集进行评估时: - **精确度**:由于部分信息损失的原因,通常情况下蒸馏会在一定程度上牺牲绝对数值上的精准程度;然而对于大多数日常应用而言仍然足够满足业务需求。 - **效率提升**:得益于更少的操作数和更低维度的空间映射关系,蒸馏能够在各类平台上展现出更快的速度响应速度,并且降低了功耗开销。 综上所述,选择哪一类型的 DeepSeek 模型取决于具体的项目背景和个人偏好——如果追求极致的效果而不考虑成本因素,则推荐采用满血;反之则可以优先考量更加经济实惠同时也具备不错实用价值的蒸馏方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值