【数据结构】时间复杂度和空间复杂度

目录

常见复杂度对比表

一、算法效率

二、时间复杂度

1.概念

2.大O的渐进表示法

3.常见时间复杂度计算的八个例子

三、空间复杂度


常见复杂度对比表

 

一、算法效率

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间
在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

二、时间复杂度

1.概念

在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。

一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法
的时间复杂度。
即: 找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度
计算一下 Func1 ++count 语句总共执行了多少次?
void Func1(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i) {
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k) {
 ++count; }
int M = 10;
while (M--) {
 ++count; }
printf("%d\n", count);
}
Func1 执行的基本操作次数为:

 N = 10 F(N) = 130

N = 100 F(N) = 10210

N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法


2.O的渐进表示法

O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。  
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。 使用大O 的渐进表示法以后, Func1 的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)

3.常见时间复杂度计算的八个例子

1.

void Func2(int N) {
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}
F =  2N + M    // 最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。
时间复杂度为 O(N)
2.
void Func3(int N, int M) {
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

F = M + N  

  //阶数相同,不能确定谁对结果的影响大,所以都要留下来,如果告诉你N远大m。则为O(N)

时间复杂度为O(N + M)

3.

void Func4(int N) {
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

F = 100  //常数1取代运行时间中的所有加法常数

O(1)就是常数次,10000和100在这里没有区别

时间复杂度为O(1)

4.
const char * strchr ( const char * str, int character );

在一串字符串中去找一个值

最好情况1次,最坏N次

一般情况关注的是算法的最坏运行情况,时间复杂度为O(N)

5.

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

这是一个冒泡排序

F =   N-1 + N-2 + ... + 2 + 1=   (N * (N-1))/2

时间复杂度 O(N^2)

6.

int BinarySearch(int* a, int n, int x) {
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1; }

二分查找法,每次找中间那个数子,相同就找到,不同就缩减一半继续二分查找

最好情况一次找到:O(1)

最坏情况:假设共N个数,每次查找都二分一次,二分了x次到最后才找到

N/2/2/2..../2=1      那么 2^x=N   x=log_2N

也即是:F=log_2N     

时间复杂度  O(logN)

 7.

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) {
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N; }

递归算法的时间复杂度 = 递归次数 * 每次递归函数中的次数

时间复杂度 O(N)

8.
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) {
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}
时间复杂度为 O(2^N)
(画图递归栈帧的二叉树)

三、空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
空间复杂度 不是程序占用了多少bytes的空间 ,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 空间复杂度主要通过函数在运行时候显式申请的额外空间来确定
因为现在社会硬件发展比较好,实际应用中不过多关注空间复杂度
注意:
不考虑输入的数组,考虑的是算法运行中额外的空间
时间是累计的,空间不累计可以复用,释放了就没了
下面举三个例子
1.
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)   //size_t end 1个
{
 int exchange = 0;   //1个
 for (size_t i = 1; i < end; ++i)   //size_t i 1个
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

空间复杂度:0(1)

2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) {
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray; }

 malloc开了 (n+1)

开了 int i 

最终空间复杂度 0(N)

3.

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) {
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N; }
递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值