Principal component analysis(PCA)-- 主成分分析2.0

文章详细介绍了PCA(主成分分析)的核心数学概念,包括拉格朗日数乘法、特征值和特征向量,以及如何通过这些概念进行数据降维。PCA通过找到数据的最佳低维投影来实现高维到低维的转换,并讨论了投影公式和数据的重构过程。文章强调了投影向量的重要性,它们是连接高维和低维空间的关键,并且提出了从低维空间恢复高维数据的近似方法。
摘要由CSDN通过智能技术生成

前情回顾:

Principal component analysis(PCA)--主成分分析1.0

(本节主要内容请参考“总结”或目录)

在进入PCA算法的推导之前,我们需要先熟知几个核心数学概念

Mathematical Background

拉格朗日数乘法

对于某个具有约束条件的函数,我们常用拉格朗日数乘法求解该函数的极值

Suppose we want to optimise f(x) subject to some constraint, 'g(x)=0'

Then we define a new objective:

and optimise with respect to both x and λ

特征值与特征向量

对于某个方阵 A ,如果存在

则称向量 u 为方阵 A特征向量(eigenvector),λ 为方阵 A特征值(eigenvalue)

矩阵求导

其中 x 是具有D个维度的矩阵/向量

Identities

if A is symmetrical:

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值