联邦学习(Federated Learning)是一种机器学习的方法,它允许在不共享数据的情况下,在多个本地设备(例如智能手机或传感器)上训练机器学习模型。联邦学习的目标是保护用户隐私,同时从用户设备中收集的数据可以用于训练更好的模型。
在传统的机器学习中,数据集通常集中存储在一个中央位置,然后使用这些数据训练一个模型。但在联邦学习中,数据分布在多个设备上,这些设备共同训练模型,每个设备只需要共享其本地模型的参数,而不是共享原始数据。
这种方法可以减少数据在传输过程中的风险,保护用户的隐私,并且减少了数据中心的负担。由于联邦学习能够在不同的设备上运行,因此它在许多应用领域都有广泛的应用,例如智能手机语音助手、物联网设备和医疗保健领域。