GPT-4 背后的计算大脑是什么?

GPT-4 背后的计算大脑是什么?

alt

今天我们来聊聊 GPU。


在过去的十多年中,GPU 的价格波动反映了投资热点。从游戏中的图形计算,到矿机,再到现在的 AI 训练,不变的是老黄家的生意一直很好。显卡也从打游戏的消耗品变成了理财产品。


和 CPU 提供的复杂通用计算相比,GPU 可以堆叠很多个逻辑计算单元(ALU),更适合进行大量而重复性的运算,比如挖矿当中用到的哈希值计算。

大模型的训练中要用到大量的向量和矩阵运算,GPU 提供了更高的投入产出比。

GPT-4 训练就是在数以万计的 Nvidia A100 GPU 上运行,每个 GPU 价值 1 万美元。

下图对 CPU、GPU 和 TPU 进行了比较。

alt

CPU - 中央处理器 - 标量乘法

CPU 设计按照冯·诺依曼体系结构。整个操作系统都运行在 CPU 上,提供了更大的灵活性。CPU 用于快速执行顺序任务,通常有多个 ALU。

GPU - 图形处理器 - 向量乘法

GPU 最初是为图形计算而设计的。2006 年,随着 Nvidia 开发出 CUDA 和 Tesla 架构,GPU 开始用于通用计算。GPU 有数千个内核,擅长执行并行任务。

TPU - 张量处理单元 - 矩阵乘法

TPU 是谷歌设计的机器学习加速器,可以理解为专门为这类任务设计和优化的专有硬件。我们可以使用 TensorFlow 等机器学习框架在 TPU 云上运行机器学习工作任务。TPU 专为特定的深度学习任务而设计,因此灵活性较差,但性能比 CPU 和 GPU 好得多。

【关注公众号ByteByteGo获取高清图】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ByteByteGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值