求最大公约数(GCD)与最小公倍数(LCM)的一些方法

最大公约数

一、辗转相除法(欧几里得算法)

简介:以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数

本质:a/b =k(余r) (a,b)的公约数与(b,r)的公约数相同,把求(a,b)的公约数转化为求(b,r)的公约数

例1:求 12 和 20 的最大公约数

20 ÷ 12= 1(余 8)

12 ÷ 8= 1(余 4)

8 ÷ 4= 2(余 0)

至此,最大公约数为4

以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 12 和 20 的最大公约数 4。

例2:求 1997 和 615 的最大公约数

1997 ÷ 615 = 3 (余 152)

615 ÷ 152 = 4(余7)

152 ÷ 7 = 21(余5)

7 ÷ 5 = 1 (余2)

5 ÷ 2 = 2 (余1)

2 ÷ 1 = 2 (余0)

至此,最大公约数为1

以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。

证明:对于a / b = k (余 r )

a可以表示成a = kb + r(a,b,k,r皆为正整数,且r不为0)

假设d是a,b的一个公约数,即a和b都可以被d整除。

而r = a - kb,两边同时除以d,r/d=a/d-kb/d,由等式右边为整数,可知等式左边r/d也为整数

因此d也是 b , r 的公约数。

可推广到任意d1,d2......若是a,b的公约数,则也是b,r的公约数,即(a,b)和(b,r)的公约数相同

因(a,b)和(b,r)的公约数相同,则其最大公约数也相等,得证。

 

注(可以这样理解):既然a,b与b,r有相同的公约数,那么其中最大的公约数也是相同的,即求a,b的最大公约数可转化为求b,r的最大公约数

 

代码实现:

注:也可以使用递归来实现,这里不作示范了,思路是一样的

//Java版  
Scanner scan = new Scanner(System.in);
        int a = scan.nextInt();
        int b = scan.nextInt();
        //大的数作为被除数,小的作为除数,因此要先判断a,b的大小
        if(a < b){		//a<b时交换两者的值
			int temp = a;
			a = b;
			b = temp;
		}
        //while循环之前仅仅是在给ab排序,保证a>b,让a作为被除数,b作为除数
        //while循环才是辗转相除的过程
        while(a % b != 0){
            int temp = b;
            b = a % b;
            a = temp;
        }	//当 a % b 余数为 0 时,算式的除数 b 就是最大公约数
        System.out.println("最大公约数="+b);

 

C语言版
#include<stdio.h>
void sort(int *a, int *b);
int main(){
	int a = 0, b = 0;
	scanf("%d %d",&a,&b);
	sort(&a, &b);//将a,b从大到小排列 
	while(a % b != 0){ //开始辗转相除 
		int temp = b;
		b = a % b;
		a = temp;
	}
	printf("最小公倍数=%d\n",b);
	return 0;
}
void sort(int *a, int *b){
	if(*a < *b){
		int temp = *a;
		*a = *b;
		*b = temp;
	}
}

 

 

二、更相减损术

第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。

第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。

 则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。

例1.用更相减损术求98与63的最大公约数。

解:由于63不是偶数,把98和63以大数减小数,并辗转相减:

98-63=35

63-35=28

35-28=7

28-7=21

21-7=14

14-7=7

所以,98和63的最大公约数等于7。

例2.用更相减损术求260和104的最大公约数。

解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。

此时65是奇数而26不是奇数,故把65和26辗转相减:

65-26=39

39-26=13

26-13=13

所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即13*2*2=52。

 

代码实现:

注:这里同样也可以用递归的方式来实现(如果不使用递归,可以用循环来代替)

 

Java版  注:GCD为最大公约数的英文缩写

import java.util.Scanner;

public class GCD {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        System.out.print("请输入第一个正整数: ");
        int num1 = scanner.nextInt();
        System.out.print("请输入第二个正整数: ");
        int num2 = scanner.nextInt();

        System.out.println("The GCD of " + num1 + " and " + num2 + " is " + gcdSubtraction(num1, num2));

        scanner.close();
    }

    public static int gcdSubtraction(int a, int b) {
        // 如果两数相等,任一数即为GCD
        if (a == b) {
            return a;
        }
        // 确保a >= b
        if (a < b) {
            int temp = a;
            a = b;
            b = temp;
        }
        
        // 使用循环替代递归,不断减去较小的数
        while (a != b) {
            if (a > b) {
                a -= b;
            } else {
                b -= a;
            }
        }
        
        // 此时 a == b 即为最大公约数
        return a;
    }
}

三、比较辗转相除法与更相减损术的区别

1、都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

2、从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

 

最小公倍数

关于最小公倍数与最大公约数有这么一个定理:

a × b = 最大公约数 × 最小公倍数 (该定理证明涉及到数论,本人没学过数论故不作证明)

由前面两种方法求得最大公约数后,用该定理即可求得最小公倍数。

最小公倍数 = a × b ÷ 最大公约数

即: 最小公倍数 = 两数乘积 ÷ 最大公约数

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值