最大公约数
一、辗转相除法(欧几里得算法)
简介:以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数
本质:a/b =k(余r) (a,b)的公约数与(b,r)的公约数相同,把求(a,b)的公约数转化为求(b,r)的公约数
例1:求 12 和 20 的最大公约数
20 ÷ 12= 1(余 8)
12 ÷ 8= 1(余 4)
8 ÷ 4= 2(余 0)
至此,最大公约数为4
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 12 和 20 的最大公约数 4。
例2:求 1997 和 615 的最大公约数
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
证明:对于a / b = k (余 r )
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r不为0)
假设d是a,b的一个公约数,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d,由等式右边为整数,可知等式左边r/d也为整数
因此d也是 b , r 的公约数。
可推广到任意d1,d2......若是a,b的公约数,则也是b,r的公约数,即(a,b)和(b,r)的公约数相同
因(a,b)和(b,r)的公约数相同,则其最大公约数也相等,得证。
注(可以这样理解):既然a,b与b,r有相同的公约数,那么其中最大的公约数也是相同的,即求a,b的最大公约数可转化为求b,r的最大公约数
代码实现:
注:也可以使用递归来实现,这里不作示范了,思路是一样的
//Java版
Scanner scan = new Scanner(System.in);
int a = scan.nextInt();
int b = scan.nextInt();
//大的数作为被除数,小的作为除数,因此要先判断a,b的大小
if(a < b){ //a<b时交换两者的值
int temp = a;
a = b;
b = temp;
}
//while循环之前仅仅是在给ab排序,保证a>b,让a作为被除数,b作为除数
//while循环才是辗转相除的过程
while(a % b != 0){
int temp = b;
b = a % b;
a = temp;
} //当 a % b 余数为 0 时,算式的除数 b 就是最大公约数
System.out.println("最大公约数="+b);
C语言版
#include<stdio.h>
void sort(int *a, int *b);
int main(){
int a = 0, b = 0;
scanf("%d %d",&a,&b);
sort(&a, &b);//将a,b从大到小排列
while(a % b != 0){ //开始辗转相除
int temp = b;
b = a % b;
a = temp;
}
printf("最小公倍数=%d\n",b);
return 0;
}
void sort(int *a, int *b){
if(*a < *b){
int temp = *a;
*a = *b;
*b = temp;
}
}
二、更相减损术
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
例1.用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数等于7。
例2.用更相减损术求260和104的最大公约数。
解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。
此时65是奇数而26不是奇数,故把65和26辗转相减:
65-26=39
39-26=13
26-13=13
所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即13*2*2=52。
代码实现:
注:这里同样也可以用递归的方式来实现(如果不使用递归,可以用循环来代替)
Java版 注:GCD为最大公约数的英文缩写
import java.util.Scanner;
public class GCD {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("请输入第一个正整数: ");
int num1 = scanner.nextInt();
System.out.print("请输入第二个正整数: ");
int num2 = scanner.nextInt();
System.out.println("The GCD of " + num1 + " and " + num2 + " is " + gcdSubtraction(num1, num2));
scanner.close();
}
public static int gcdSubtraction(int a, int b) {
// 如果两数相等,任一数即为GCD
if (a == b) {
return a;
}
// 确保a >= b
if (a < b) {
int temp = a;
a = b;
b = temp;
}
// 使用循环替代递归,不断减去较小的数
while (a != b) {
if (a > b) {
a -= b;
} else {
b -= a;
}
}
// 此时 a == b 即为最大公约数
return a;
}
}
三、比较辗转相除法与更相减损术的区别
1、都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
2、从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。
最小公倍数
关于最小公倍数与最大公约数有这么一个定理:
a × b = 最大公约数 × 最小公倍数 (该定理证明涉及到数论,本人没学过数论故不作证明)
由前面两种方法求得最大公约数后,用该定理即可求得最小公倍数。
最小公倍数 = a × b ÷ 最大公约数
即: 最小公倍数 = 两数乘积 ÷ 最大公约数