机器学习实例:手写数字识别
在这个实例中,我们将使用Python和Scikit-Learn库来构建一个手写数字识别器。我们将使用MNIST数据集,该数据集包含大约70000个手写数字的图像。每个图像都是28x28像素大小的灰度图像。
数据预处理
首先,我们需要从Scikit-Learn库中导入MNIST数据集。然后,我们将数据集划分为训练集和测试集。我们将使用训练集来训练我们的模型,然后使用测试集来评估模型的性能。
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784')
X, y = mnist["data"], mnist["target"]
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
接下来,我们将对数据进行缩放。将像素值缩放到0到1之间,这可以帮助提高我们的模型的性能。
X_train = X_train / 255.0
X_test = X_test / 255.0
</