机器学习实例:手写数字识别

本文通过Python和Scikit-Learn利用MNIST数据集构建了一个手写数字识别器,数据预处理包括训练集和测试集划分及像素值缩放。采用SVM分类器进行训练,模型在测试集上的准确率达到0.98。
摘要由CSDN通过智能技术生成

机器学习实例:手写数字识别

在这个实例中,我们将使用Python和Scikit-Learn库来构建一个手写数字识别器。我们将使用MNIST数据集,该数据集包含大约70000个手写数字的图像。每个图像都是28x28像素大小的灰度图像。

数据预处理

首先,我们需要从Scikit-Learn库中导入MNIST数据集。然后,我们将数据集划分为训练集和测试集。我们将使用训练集来训练我们的模型,然后使用测试集来评估模型的性能。

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784')

X, y = mnist["data"], mnist["target"]

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

接下来,我们将对数据进行缩放。将像素值缩放到0到1之间,这可以帮助提高我们的模型的性能。

X_train = X_train / 255.0
X_test = X_test / 255.0
</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值