matplotlib

该博客使用pandas和matplotlib库分析了年龄与销售的关系。首先,通过创建DataFrame并保存为csv文件展示了年龄、收入和销售数据。接着,读取csv文件并将数据绘制为两个图表:一个折线图展示年龄与销售的线性关系,另一个柱状图展示收入与销售的分布。两个图表均以年龄为x轴,销售为y轴,帮助理解不同年龄段的销售表现。
摘要由CSDN通过智能技术生成
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
#年龄
age=[34,32,45,65,45,22,34,56,54,21]
#收入
income=[367,344,655,444,322,665,777,544,678,232]
#销售
sales=[123,321,342,34,233,456,233,432,32,23]
#创建DataFrame,将数据存入csv
df=pd.DataFrame({"age":age,"income":income,"sales":sales})
df.to_csv("./age_income.csv")
#读csv文件,将数据存入DataFrame
df2=pd.read_csv("./age_income.csv")

#画图(折线图)
df2.sort_values(by='age',inplace=True)
plt.subplot(1,2,1)
plt.plot(df2['age'],df2["sales"],c='r',marker='o')#插入数据
plt.title("毛shangp:年龄销售关系图")
plt.xlabel("年龄")
plt.ylabel("销售")

#化柱形图
df2.sort_values(by='income',inplace=True)
plt.subplot(1,2,2)#子图
plt.bar(df2['income'],df2['sales'])
plt.title("毛shangp:说如销售关系图")
plt.xlabel("年龄")
plt.ylabel("销售")
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值