import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #年龄 age=[34,32,45,65,45,22,34,56,54,21] #收入 income=[367,344,655,444,322,665,777,544,678,232] #销售 sales=[123,321,342,34,233,456,233,432,32,23] #创建DataFrame,将数据存入csv df=pd.DataFrame({"age":age,"income":income,"sales":sales}) df.to_csv("./age_income.csv") #读csv文件,将数据存入DataFrame df2=pd.read_csv("./age_income.csv") #画图(折线图) df2.sort_values(by='age',inplace=True) plt.subplot(1,2,1) plt.plot(df2['age'],df2["sales"],c='r',marker='o')#插入数据 plt.title("毛shangp:年龄销售关系图") plt.xlabel("年龄") plt.ylabel("销售") #化柱形图 df2.sort_values(by='income',inplace=True) plt.subplot(1,2,2)#子图 plt.bar(df2['income'],df2['sales']) plt.title("毛shangp:说如销售关系图") plt.xlabel("年龄") plt.ylabel("销售") plt.show()
matplotlib
最新推荐文章于 2024-11-02 16:28:26 发布
该博客使用pandas和matplotlib库分析了年龄与销售的关系。首先,通过创建DataFrame并保存为csv文件展示了年龄、收入和销售数据。接着,读取csv文件并将数据绘制为两个图表:一个折线图展示年龄与销售的线性关系,另一个柱状图展示收入与销售的分布。两个图表均以年龄为x轴,销售为y轴,帮助理解不同年龄段的销售表现。
摘要由CSDN通过智能技术生成