创意平板折叠桌题目详情
某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。桌子外形由直纹曲面构成,造型美观。附件视频展示了折叠桌的动态变化过程。试建立数学模型讨论下列问题:
1. 给定长方形平板尺寸为120 cm × 50 cm × 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。
2. 折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。
3. 公司计划开发一种折叠桌设计软件,根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。你们团队的任务是帮助给出这一软件设计的数学模型,并根据所建立的模型给出几个你们自己设计的创意平板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。
符号说明:

问题一:
其中第i 根木条对应的弦长ti 如下图所示(这里只取前9根木条):
用弦长公式求出桌面前9根木条的弦长,再用拟合求出最后一个木条的半弦长,最终拟合结果如下:
拟合函数表达式:
最终得到的弦长及桌腿木条长度如下:

代码如下:
x=[2.5 5 7.5 10 12.5 15 17.5 20 22.5];
t=zeros(9,1);
for i=1:9
t(i)=sqrt(25^2-(2.5*i)^2);
end
a=polyfit(x,t,2);
y=polyval(a,25);
x0=2.5:0.1:25;
y0=zeros(1,226);
n=1;
for xx=2.5:0.1:25
yy=a(1)*xx^2+xx*a(2)+a(3);
y0(n)=yy;
n=n+1;
end
plot(x,t,'b*',25,7.5687,'b*',x0,y0,'--');
t(10)=7.5687;
m=zeros(10,1);
for i=1:10
m(i)=60-t(i);
end
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',t,'sheet1','A2:A11');
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',m,'sheet1','B2:B11');
kc=zeros(10,1);
r=sqrt(m(10)^2-50^2);
for i=1:10
kc(i)=m(10)-m(i);
end
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',kc,'sheet1','C2:C11');
求桌面边缘线点的坐标 :
(1)桌面边缘线点、桌腿边缘点与桌腿木条长度构成勾股定理。
(2)根据两点确定一条直线,由桌面边缘处点的坐标,桌腿与钢筋连接处的坐标确定桌腿边缘点的坐标
因此可建立二元一次方程组:
用matlab解二元方程组 ,代码如下:
y3=zeros(10,1);z3=zeros(10,1);
x1=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','F13:F22');
y1=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','G13:G22');
z1=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','H13:H22');
x2=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','K13:K22');
y2=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','L13:L22');
z2=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','M13:M22');
x3=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','O13:O22');
for i=1:10
syms y z; % 定义u v 是未知量
eqns=[(y1(i)-y)^2+(50-z)^2==m(i)^2,(z2(i)-z1(i))/(z-z2(i))==(y2(i)-y1(i))/(y-y2(i))]; % 定义方程组
vars=[y,z]; % 定义求解的未知量
[solU,solV]=solve(eqns,vars); % 求解eqns中的vars未知量,分别存储
sol=solve(eqns,vars); % 求解eqns中的vars未知量,以结构体的形式存储到sol中
solU1=sol.y; % 从sol结构体中取出变量u的解
solV1=sol.z ;% 从sol结构体中取出变量v的解
solU1=double(solU1);
solV1=double(solV1);
y3(i)=solU1(1);
z3(i)=solV1(1);
end
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',y3,'sheet1','P3:P11');
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',z3,'sheet1','Q3:Q11');
最终得到桌腿边缘处点的坐标:
x4=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','O3:O22');
y4=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','P3:P22');
z4=xlsread('F:\第十二道问题:创意平板\创意平板.xlsx','sheet1','Q3:Q22');
plot3(x4,y4,z4);
hold on
plot3(x4,y4,z4,'*')
xlabel('x');
ylabel('y');
zlabel('z');
问题二:
用lingo求解该模型(代码如下:)
min=80*b*d;
p=(28*@tan(a)-70+b)/@tan(a);
q=(28^2+(28*@tan(a))^2)^(1/2)-p/@cos(a);
d=2*(p+q);
p>0;
q>70-b;
p+q>80;
b>1;
在得到平板规格后,按照问题一的方法求半弦长,开槽长度,桌腿木条长度等,其中求半弦长用了拟合,拟合的函数表达式及拟合曲线如下:
代码如下:
x=[2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5];
t=zeros(15,1);
for i=1:15
t(i)=sqrt(40^2-(2.5*i)^2);
end
a=polyfit(x,t,2);
y=polyval(a,40);
x0=2.5:0.1:40;
y0=zeros(1,226);
n=1;
for xx=2.5:0.1:40
yy=a(1)*xx^2+xx*a(2)+a(3);
y0(n)=yy;
n=n+1;
end
plot(x,t,'b*',40,11.4303,'b*',x0,y0,'--');
t(16)=11.4303;
m=zeros(16,1);
for i=1:16
m(i)=80-t(i);
end
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',t,'sheet2','A2:A17');
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',m,'sheet2','B2:B17');
kc=zeros(16,1);
r=sqrt(m(16)^2-50^2);
for i=1:16
kc(i)=m(16)-m(i);
end
xlswrite('F:\第十二道问题:创意平板\创意平板.xlsx',kc,'sheet2','C2:C17');
求得钢筋水平位置在23.4617cm 处,钢筋的竖直高度在34.5cm处
问题三: