python求最大公约数和最小公倍数

本文介绍了辗转相除法(欧几里德算法)的概念及其在计算两个整数最大公约数的应用,通过Python代码示例展示了如何使用这种方法,并提及了最小公倍数的计算方法。
摘要由CSDN通过智能技术生成

辗转相除法。
      辗转相除法又称为欧几里德算法。这个方法大家已经都已经在数学上学过了。具体的步骤就是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后的除数就是这两个数的最大公约数。举个例子就是:比如两个数字,x=453,y=36;

453%36=21;

36%21=15;

21%15=6;

15%6=3;

6%3=0;

%是取余符号,大家应该都知道吧。所以用这个算法可以求出453和36的最大公约数是3;

最小公倍数 = 两数相乘 / 最大公约数

下面是python代码演示:

n, m = map(int, input("输入两个数用空格隔开:").split())
t = n*m
while m:
    n, m = m, n % m
print(f"最大公约数是:{n}\n最小公倍数是:{t/n:.0f}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值