给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
结尾无空行
输出样例:
Yes
No
No
这题的思路在mooc陈越姥姥那儿说过了,主要解决三个问题:
1、二叉搜索树的表示
2、二叉搜索树的构造
3、二叉搜索树的比较
难点在于3,根据课程的思路,先通过第一行数据构造出二叉搜索树之后,将后面每行的数据一个一个拿到树里去搜索,如果过程中经过的结点在此前没有经历过,就说明不是同一棵树。(因为同一颗二叉搜索树,找到某个数据经过的途径是