二分查找法。Java泛型设计二分查找法。

本文详细介绍了二分查找算法的原理、实现方式(递归与非递归)以及在寻找边界问题中的应用,如寻找大于或小于特定值的最小/最大元素。通过实例解析了二分查找在LeetCode题目中的应用,如寻找满足条件的最小吃香蕉速度和最短运输时间。

前言基础:

1、只能针对有序的数组进行查找。

2、时间复杂度为O(logn)。

3、使用前可以先排序,然后再查找,广泛应用于当一大组数据需要频繁查找,于是我们先将其进行排序,然后再通过二分查找进行查找。

4、主要有两种实现方式:递归法和非递归法。

5、如果有两个相同的元素,二分查找法返回的永远都是下标值小的那个索引。

        例:Integer arr[]={0,1,2,3,3};找3,最终返回的是index=3而不是4.

6、二分查找法的核心就是确定边界,看好函数目的确定if条件,while循环是否取等就看取等时数组是否为空。

7、我们只要发现最后得到的结果是线性有序的,就可以考虑二分查找法解决问题(下有leetCode理题)。

8、二分查找法最终如果没有找到目标元素,l(左边界)所在的位置就是该元素应该插入的位置

leetCode35
 

class Solution {
    //1、递归实现
    public int searchInsert1(int[] nums, int target) {
        return myWay(nums,0,nums.length-1,target);
    }
    public int myWay(int[] nums,int l,int r, int target){
        if  (l>r) return l;
        int mid=(l+r)/2;
        if(nums[mid]==target)
            return mid;
        if(nums[mid]<target)
            return myWay(nums,mid+1,r,target);
        return myWay(nums,l,mid-1,target);
    }

    //2、非递归实现
    public int searchInsert(int[] arr, int target) {
        int l=0,r=arr.length-1;
        while(l<=r){
            int mid=(l+r)/2;
            if  (arr[mid]==target)
                return mid;
            if(arr[mid]<target)
                l=mid+1;
            else
                r=mid-1;
        }
        return l;
    }
}


查找过程:

        每次对数组进行划分,选取中间的元素,让中间的元素与要查找的元素进行比较,然后修改左右边界。


 代码部分:(非递归与递归算法)

public class BinarySearch {
    public BinarySearch() {
    }

    //1、非递归实现:
    public static <E extends Comparable<E>> int search(E arr[], E target) {
        int start = 0, end = arr.length - 1;

        //此处是小于等于end,每次在arr[start,end]中查找
        //while循环就是在保证里面有元素,条件都是根据循环不变量来确定的
        while (start <= end) {     
            int mid = (start + end) / 2;

            if (arr[mid].compareTo(target) == 0)
                return mid;
            if (arr[mid].compareTo(target) > 0)
                end = mid - 1;
            else
                start = mid + 1;
        }
        return -1;
    }

    //2、递归方式
    public static <E extends Comparable<E>> int search_D(E arr[], E target) {
        return search_D(arr, target, 0, arr.length - 1);
    }

    private static <E extends Comparable<E>> int search_D(E[] arr, E target, int start, int end) {
        if (start > end) return -1; //此处不取等,因为当start>end时数组为空数组,不符合条件,所以才返回-1

        int mid = (start + end) / 2;

        if (arr[mid].compareTo(target) == 0)
            return mid;

        if (arr[mid].compareTo(target) > 0)
            return search_D(arr, target, start, mid - 1);
        else
            return search_D(arr, target, mid + 1, end);
    }
}

二分搜索法的应用:

二分搜索法的一个非常重要的应用就是寻找边界问题:

1、找大于某个数的最小值,小于某个数的最大值。

2、寻找最长期限问题等。

一)寻找大于目标值的最小元素的值。

例如:有一次考试,我们要找到第一个大于六十分的同学(不包括60分)的索引,从而获得其基本信息。 

注意事项:

1、初始值问题:l为0,r为arr.length而不是最后一个元素,因为尽管数组中不存在这样的元素,也不至于没有元素可以返回。

    /**
     * 大于目标值的最小值
     */
    public static <E extends Comparable<E>> int upper(E arr[], E target) {
        //在arr[0,arr.length]中寻找
        int start = 0, end = arr.length;
        while (start < end) {           // 要保证其不是空数组,所以这里不取等
            int mid = (start + end) / 2;
            //找的是比它大的最小值,此时将等于它的忽略掉
            /**此处不取等*/
            if (arr[mid].compareTo(target) > 0)
                end = mid;
            else
                start = mid + 1;
        }
        return start;           // 最终l不会超过r,结束的条件都是l等于r。所以返回r和l都可
    }


    //派生代码:(拓展)
    //1、ciel就是向上取整的意思。如果元素存在就返回最大的索引,不存在就返回比其大的最小的元素索引。
    public static <E extends Comparable<E>> int ciel(E arr[], E target) {
        int upper = upper(arr, target);
        if (upper - 1 >= 0 && arr[upper - 1] == target)
            return upper - 1;
        return upper;
    }

    //2、如果元素存在就返回索引较小的那个元素的下标。
    public static <E extends Comparable<E>> int lower_ceil(E arr[], E target) {
        //在arr[0,arr.length]中寻找
        int start = 0, end = arr.length;  
        while (start < end) {
            int mid = (start + end) / 2;
            if (arr[mid].compareTo(target) >= 0)     
                end = mid;
            else
                start = mid + 1;
        }
        return start;
    }

二)寻找小于目标元素的最大值:

1、此处的初始化l=-1同样是为了当数组没有满足的元素的时候不至于无法返回值

2、当l=-1时,计算mid时要多加个1。

/*返回小于目标元素的最大值*/ 
public static <E extends Comparable<E>> int lower(E arr[], E target) {
        int start = -1, end = arr.length - 1;
        while (start < end) {
            int mid = (start + end + 1) / 2;/**此处要比二分搜索多加个1*/

            //因为在找小于target的最大值,所以等于的那个元素可以不要
            if (arr[mid].compareTo(target) < 0)
                start = mid;
            else
                end = mid - 1;
        }
        return start;
    }


    /**  扩展派生:
     * 与lower_ciel的区别,如果不存在就返回比其小的最大值的最大索引
     * 1,1,3,3,5,5,找4返回第二个三,找5返回最大的5
     */
    public static <E extends Comparable<E>> int lower_floor(E arr[], E target) {
        int lower = lower(arr, target);
        if (lower + 1 <= arr.length - 1 && arr[lower + 1].compareTo(target) == 0)
            return lower + 1;
        return lower;
    }

    //2、存在目标元素返回下标最大的那个--->相同元素最大下标
    public static <E extends Comparable<E>> int upper_floor(E arr[], E target) {
        int start = -1, end = arr.length - 1;
        while (start < end) {
            int mid = (end + start + 1) / 2;
            if (arr[mid].compareTo(target) <= 0) {
                start = mid;
            } else {
                end = mid - 1;
            }
        }
        return start;
    }

 上述两种方法的总结:

如果要找比其大的最小值,就让右边界为arr.length。

要找比其小的最大值,就让左边界起始=-1,并且为了保证mid的有效性让mid=(l+r+1)/2;


可以将上述两种方法总结成一个模板:

1、l和r永远是查询空间。

2、while循环是否取等就看l=r时这个数组是否是空数组。

3、if中的条件都是保证满足函数目的的。(例:upper是要找比目标元素大的第一个元素,它不需要返回目标元素只需要比目标元素大的,所以if条件中不需要等号,low_ciel最终会返回目标元素或比目标元素大的第一个元素,这里需要返回目标元素,所以就需要有等号。)

4、最后的返回值,返回l和r都行,通过代码可以验证最后循环结束的条件总是l=r。


leetCode练习:

1、875题目:

        珂珂喜欢吃香蕉。这里有 N 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 H 小时后回来。珂珂可以决定她吃香蕉的速度 K (单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 K 根。如果这堆香蕉少于 K 根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉。 珂珂喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。返回她可以在 H 小时内吃掉所有香蕉的最小速度 K(K 为整数)。

/**对于二分查找问题,首先就是要先确定左右边界是什么*/
    //三、875找的就是满足条件的最大值
    /**二刷心得:
     * 1、start和end不是固定的就必须是0-arr.length等,这是问题的边界。
     *      本题中是吃的速度,最小为1,最大为数组中最大的元素。
     *  2、分析换值问题时根据if条件。本题是mid越大得到的值越小,所以最终变化区间时与之前不同。
     * */
    public int minEatingSpeed(int[] arr, int h) {
        //边界:每小时只能吃一堆,如果速度=max(arr)一共要arr.length小时,是时间最短。speed=1时,时间最长。
        int start = 1, end = Arrays.stream(arr).max().getAsInt();
        /**本题的循环不变量就是[1,max(arr)]*/
        while (start < end) {
            int mid = (start + end) / 2;

            if (eatTime(arr, mid) <= h) {
                //此时其可能就已经是解了,于是不能把这个mid对应的值删掉
                //mid越小,时间越长,于是要让mid减小,end就得变小
                end = mid;
            } else {
                //每小时吃的太少了,得多吃点,于是要在右边找
                start = mid + 1;
            }
        }
        return start;
    }
    //  每小时吃k个,res小时吃完。k越大res越小
    private int eatTime(int[] arr, int k) {
        int res = 0;
        for (int one : arr)
            res += one / k + (one % k != 0 ? 1 : 0);
        return res;
    }

2、1011题:

        传送带上的包裹必须在 days 天内从一个港口运送到另一个港口。传送带上的第 i 个包裹的重量为 weights[i]。每一天,我们都会按给出重量(weights)的顺序往传送带上装载包裹。我们装载的重量不会超过船的最大运载重量。返回能在 days 天内将传送带上的所有包裹送达的船的最低运载能力。

    //四、1011
    /**二刷经验,
     * 1、最小边界:应该是整个数组中元素最大的那个,因为如果最小值小于这个值,最大重量的这个货物将永远不能运走
     * 2、每次day++时,sum不能清零而是应该等于此次的货物重量,否则就会少算一天的重量
     * 3、*/
    public static int shipWithinDays(int[] arr, int days) {
        int l = Arrays.stream(arr).max().getAsInt(), r = Arrays.stream(arr).sum();
        while (l < r) {
            int mid = (l + r) / 2;
            if (sum_day(arr, mid) <= days)
                r = mid;
            else
                l = mid + 1;
        }
        return l;
    }

    //mid越大day越少
    private static int sum_day(int[] arr, int mid) {
        int sum_day = 0;
        int sum = 0;
        for (int one : arr) {
            if (sum + one <= mid)
                sum += one;
            else {
                //**此处不是sum=0,判断是用当前的重量+one
                sum = one;
                sum_day++;
            }
        }
        //最后还剩下货物,所以还要将最后一天的加上
        sum_day++;
        return sum_day;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值