最小生成树prim算法leetcode.1584

static boolean[] mark;//是否访问过该顶点
    static Queue<int[]> pq;//存储横切边权重及另一个顶点
    static Deque<Edge>[] adj;//无向加权图
    static int ans=0;
    static class Edge {
        private final int v;//两个顶点
        private final int w;
        private final int weight;//权重

        public Edge(int v,int w,int weight){
            this.v=v;
            this.w=w;
            this.weight=weight;
        }

        //获取权重
        public int weight(){
            return weight;
        }
        //获取某个顶点
        public int either(){
            return v;
        }
        //获取另一个顶点
        public int other(int vertex){
            if(vertex==v)
                return w;
            else return v;
        }
    }
    public static int minCostConnectPoints(int[][] points) {
        int n=points.length;
        adj=new ArrayDeque[n];
        mark=new boolean[n];
        pq=new PriorityQueue<>((o1, o2) -> o1[0]-o2[0]) ;
        //建立无向加权图
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j <n ; j++) {
                if(adj[i]==null)
                    adj[i]=new ArrayDeque<>();
                adj[i].offer(new Edge(i,j,Math.abs(points[i][0]-points[j][0])
                        +Math.abs(points[i][1]-points[j][1])));
                if(adj[j]==null)
                    adj[j]=new ArrayDeque<>();
                adj[j].offer(new Edge(i,j,Math.abs(points[i][0]-points[j][0])
                        +Math.abs(points[i][1]-points[j][1])));
            }
        }
       pq.offer(new int[]{0,0});//从0点开始
        //当所有顶点加入后没有横切边
        while (!pq.isEmpty()){
            int[] tmp=pq.poll();//最小权重边
            int to=tmp[1];
            int weight=tmp[0];
            //判断是否为横切边,不是则跳过
            if(!mark[to]){
                ans+=weight;
                visit(adj,to);
            }

        }
        return ans;

    }

    public static void visit(Deque<Edge>[] adj, int v){
        mark[v]=true;
        //枚举顶点的所有边
        for (Edge e :adj[v]) {
            int w=e.other(v);//另一个顶点
            if(!mark[w]){
                //添加到队列中排序
               pq.offer(new int[]{e.weight(),w});
               }
            }
        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值