复习11-Acwing3588. 排列与二进制

在组合数学中,我们学过排列数。

从 nn 个不同元素中取出 mm(m<=nm<=n)个元素的所有排列的个数,叫做从 nn 中取 mm 的排列数,记为 p(n,m)p(n,m)。

具体计算方法为 p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!(规定 0!=10!=1)。

当 nn 和 mm 不是很小时,这个排列数是比较大的数值,比如 p(10,5)=30240p(10,5)=30240。

如果用二进制表示为 p(10,5)=30240=(111011000100000)bp(10,5)=30240=(111011000100000)b,也就是说,最后面有 55 个零。

我们的问题就是,给定一个排列数,算出其二进制表示的后面有多少个连续的零。

输入格式

输入包含多组测试数据。

每组数据占一行,包含两个整数 n,mn,m。

最后一行为 0 0,表示输入结束,无需处理。

输出格式

每组数据输出一行,一个结果,表示排列数 p(n,m)p(n,m) 的二进制表示后面有多少个连续的零。

数据范围

1≤m≤n≤100001≤m≤n≤10000,
输入最多包含 100100 组数据。

输入样例:

10 5
6 1
0 0

输出样例:

5
1

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e4+10;
long long a[N];
int main()
{
    
    for (int i = 1; i <=10000; i ++ )
    {
        int cnt=i;
        while (cnt%2==0)
        {
            a[i]++;
            cnt/=2;
        }
    }
    long long l,r;
    
    while (cin>>l>>r&&(l&&r))
    {
        int cnt=0;
        for (int i = l-r+1; i <= l; i ++ )
        cnt+=a[i];
        cout << cnt<<endl;
    }
}

注:二进制的乘法0的数目不变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值