在组合数学中,我们学过排列数。
从 nn 个不同元素中取出 mm(m<=nm<=n)个元素的所有排列的个数,叫做从 nn 中取 mm 的排列数,记为 p(n,m)p(n,m)。
具体计算方法为 p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!(规定 0!=10!=1)。
当 nn 和 mm 不是很小时,这个排列数是比较大的数值,比如 p(10,5)=30240p(10,5)=30240。
如果用二进制表示为 p(10,5)=30240=(111011000100000)bp(10,5)=30240=(111011000100000)b,也就是说,最后面有 55 个零。
我们的问题就是,给定一个排列数,算出其二进制表示的后面有多少个连续的零。
输入格式
输入包含多组测试数据。
每组数据占一行,包含两个整数 n,mn,m。
最后一行为 0 0
,表示输入结束,无需处理。
输出格式
每组数据输出一行,一个结果,表示排列数 p(n,m)p(n,m) 的二进制表示后面有多少个连续的零。
数据范围
1≤m≤n≤100001≤m≤n≤10000,
输入最多包含 100100 组数据。
输入样例:
10 5
6 1
0 0
输出样例:
5
1
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e4+10;
long long a[N];
int main()
{
for (int i = 1; i <=10000; i ++ )
{
int cnt=i;
while (cnt%2==0)
{
a[i]++;
cnt/=2;
}
}
long long l,r;
while (cin>>l>>r&&(l&&r))
{
int cnt=0;
for (int i = l-r+1; i <= l; i ++ )
cnt+=a[i];
cout << cnt<<endl;
}
}
注:二进制的乘法0的数目不变