题目描述:
从昏迷中醒来,小明发现自己被关在X星球的废矿车里。矿车停在平直的废弃的轨道上。他的面前是两个按钮,分别写着“F”和“B”。
小明突然记起来,这两个按钮可以控制矿车在轨道上前进和后退。按F,会前进97米。按B会后退127米。
透过昏暗的灯光,小明看到自己前方1米远正好有个监控探头。他必须设法使得矿车正好停在摄像头的下方,才有机会争取同伴的援助。或许,通过多次操作F和B可以办到。
矿车上的动力已经不太足,黄色的警示灯在默默闪烁...每次进行 F 或 B 操作都会消耗一定的能量。小明飞快地计算,至少要多少 次操作,才能把矿车准确地停在前方1米远的地方。
请填写为了达成目标,最少需要操作的次数。
方案一:暴力破解
#include<stdio.h>
int main()
{
int i,j,m;
for(i = 0 ; i < 50000 ; i++)
{
for(j = 0 ; j < 50000 ; j++)
{
m = 97*i - 127*j;
if(m == 1)
{
printf("F=%d B=%d\n",i,j);
printf("SUM=%d\n",i + j);
return 0;
}
}
}
}
结果:
方案二:不定方程整数解(a*x +b*y = gcd(a,b)) (本题可看成求97*i + 127*j = 1的解)
百科上对于扩展欧几里德定律的讨论:
代码:
#include<stdio.h>
#include<math.h>
void e_gcd(int xy[],int a,int b)
{
if(b == 0)
{
xy[0] = 1;
xy[1] = 0;
return;
}
e_gcd(xy,b,a%b);
int t = xy[0];
xy[0] = xy[1];
xy[1] = t - (a/b)*xy[1];
}
int main()
{
int xy[2];
e_gcd(xy,97,127);
printf("%d + %d = %d",abs(xy[0]),abs(xy[1]),abs(xy[0]) + abs(xy[1]));
return 0;
}
运行结果:
原文链接:https://blog.csdn.net/zhangge138/article/details/79578035