蓝桥杯 第几个幸运树

本文探讨了如何通过重构质因数分解检查函数,并利用优先队列实现,提高计算357乘积在一定范围内的出现次数。作者首先尝试了递归分解的方法,发现效率低下,然后转向直接枚举357组合,利用优先队列优化查找过程。最终得出满足条件的幸运树计数方法。
摘要由CSDN通过智能技术生成

害,一开始是想写一个check函数分解质因数判断一个数是否满足条件,再从1到目标数枚举求出最后的次数如下,结果可想而知。时间复杂度太大,而且好像也运行不了。

#include<bits/stdc++.h>
using namespace std;
int cnt;
typedef long long LL;
const LL ans=59084709587505;
bool check(LL a)
{
    for(int i=2;i<=a/i;i++)
    {
        if(a%i==0)
        {
            while(a%i==0)
            {
                if(i!=3&&i!=5&&i!=7) return false;
               
                a/=i;
            }
        }
    }
    if(a>1)
    {
        if(a!=3&&a!=5&&a!=7) return false;
    }
    return true;
}
int main()
{
    for(LL i=2;i<=ans;i++)
    {
        if(check(i))
        {
            cnt++;
        }
    }
    cout<<cnt<<endl;
    return 0;
}

后来就想到,其实满足条件的数其实都是3 5 7 乘起来组合起来的数。

#include<bits/stdc++.h>
using namespace std;
int cnt;
typedef long long LL;
const LL ans=59084709587505;
priority_queue<LL,vector<LL>,greater<LL>> heap;//用优先队列方式。
const int a[3]={3,5,7};  //分析可知幸运树其实就是357乘积,只要从小到大枚举就能求出答案cnt;
int main()
{  
   map<LL,int> m;
   heap.push(1);
   
   while(1)
   {   
       auto t=heap.top();
       heap.pop();
       if(t==ans)
       {
           cout<<cnt<<endl;
           break;    
       }
       for(int i=0;i<3;i++)
       {
               LL tmp=t*a[i];
               if(m[tmp]==0)
               {heap.push(tmp);
               m[tmp]=1;}
           
       }
       cnt++;  //注意,1是第一个出来的,此时cnt为0;所以在判断t==ans时,cnt即为ans的位次
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃代码的航航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值