大模型的“三重门”,AI的尽头是什么?

1956年夏天,新罕布什尔州达特茅斯学院迎来了一场特殊的学术聚会。当数学教授约翰·麦卡锡在会议提案中首次写下“Artificial Intelligence”这个术语时,或许未曾料到,这场原本计划用两个月时间“彻底解决机器模拟智能问题”的讨论,竟开启了一场跨越世纪的认知革命。

阿里巴巴集团CEO吴泳铭在财报会议上语气铿锵,仿佛预见到历史转折的关键瞬间:“一旦AGI真正实现,其所催生的产业规模,极有可能问鼎全球之首,甚至有可能深刻地影响、乃至部分取代当下全球经济构成中近半壁江山的产业形态。”

在惊喜与担忧之间,人们正学着接纳和拥抱人工智能,惴惴不安地揣测着通用人工智能(AGI)何时到来。然而,作为掀起本轮AI热潮的主角,大语言模型或许还只是一个探路者,离真正的AGI仍相距甚远,甚至根本不是通达AGI的正途。对此,人们不免心生疑问,我们离实现真正的AGI还有多远?

谁是AGI的起点?

“通用人工智能(Artificial General Intelligence)”一词最初出现在北卡罗莱纳大学物理学家Mark Gubrud于1997年发表的一篇有关军事技术的文章中,其中将AGI定义为“在复杂性和速度上与人脑相媲美或超越的AI系统,可以获取一般性知识,并以其为基础进行操作和推理,可以在任何工业或军事活动中发挥人类智力的作用。”

一直以来,AGI被视为人工智能领域的“圣杯”,它意味着机器能够像人类一样,在多种任务中自主学习、推理并适应复杂环境。从GPT-4的对话能力到Sora的视频生成,尽管近年来AI技术突飞猛进,但AGI的实现仍面临多重鸿沟。

AI的核心就是把现实世界的现象翻译成为数学模型,通过语言让机器充分理解现实世界和数据的关系。而AGI更进一步,让AI不再局限于单一任务,而是具备跨领域学习和迁移能力,因此具有更强的通用性。

如果比较AGI的特征,就会发现当前AI系统虽然在特定任务上超越人类(如文本生成、图像识别),但本质上仍是“高级模仿”,缺乏对物理世界的感知和自主决策能力,依然不符合AGI的要求。

首先,大模型在处理任务方面的能力有限,它们只能处理文本领域的任务,无法与物理和社会环境进行互动。这意味着像ChatGPT、DeepSeek这样的模型不能真正“理解”语言的含义,因为它们没有身体来体验物理空间。

其次,大模型也不是自主的,它们需要人类来具体定义好每一个任务,就像一只“鹦鹉”,只能模仿被训练过的话语。真正自主的智能应该类似于“乌鸦智能”,能够自主完成比现如今AI更加智能的任务,当下的AI系统还不具备这种潜能。

第三,虽然ChatGPT已经在不同的文本数据语料库上进行了大规模训练,包括隐含人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值