自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 Python计算两个质谱谱图的相似度——Matchms

matchms是一个功能强大的 Python 库,它为代谢组学研究人员提供了一套全面的工具,用于处理、分析和解释质谱数据。核心功能:质谱比较: matchms的核心功能是比较质谱。它提供多种质谱相似性度量方法,例如余弦相似度、修正余弦相似度和质谱对齐。这允许研究人员识别来自不同样本或实验的相似代谢物。质谱预处理: matchms 包含各种预处理步骤,例如基线校正、降噪、峰值拾取和标准化。这些步骤对于在比较和分析之前清理和准备质谱数据至关重要。质谱过滤。

2024-04-10 11:55:35 978 1

原创 Pytorch框架下使用Gemma

Gemma是谷歌发布的一款开源大语言模型,并且Gemma是开源大模型的SOTA,超越了Meta的LLaMa2。综合来说,Gemma有以下几个特点:坚实的模型基础:Gemma使用与谷歌更强大的人工智能模型Gemini相同的研究和技术。这一共同的基础确保了Gemma建立在一个强大的基础上,并具有强大的能力潜力。轻便易用:与体型较大的Gemini不同,Gemma的设计重量轻,所需资源较少。这使得它可以被更广泛的用户访问,包括研究人员、开发人员,甚至那些计算资源有限的用户。

2024-02-24 15:33:03 2104 2

原创 PosIDNSeq介绍及复现错误记录

论文的标题是《PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information》,作者是Hangyuan Yang, Minghui Wang, Xia Liu, Xing-Ming Zhao, 和 Ao Li。

2024-02-23 20:11:54 801

原创 大模型的数据管理——论文精读

随着人工智能技术的飞速发展,大型语言模型(LLMs)已经成为自然语言处理(NLP)领域的一项突破性进展。这些模型通过在海量文本数据上进行预训练,展现出了强大的语言理解和生成能力,从而在多种NLP任务中取得了令人瞩目的成果。然而,LLMs的成功不仅依赖于其复杂的模型架构,更关键的是它们所依赖的高质量、大规模的数据集。数据管理,即如何有效地组织和处理这些数据,对于LLMs的性能提升和训练效率至关重要。在预训练阶段,构建包含高质量数据的数据集对于模型的高效训练至关重要。

2024-02-16 15:54:01 1034 1

原创 DCAI与MCAI对比实验(评论分类器)

这个文章将介绍数据中心与模型中心的机器学习方法,展示如何数据中心的方法可以超过纯粹的模型中心的方法。在这个文章中,我们会构建一个用于产品评论的分类器,例如:Excellent!我们会用一个有问题的dataset,然后我们会看到如何通过选择更好的模型,搜索更好的超参数,等等来达到更好的性能。然后,我们会看看数据(就像任何优秀的数据科学家应该做的那样),了解问题,然后使用简单的办法来改进数据。最后,我们会看到改进数据可以改善结果。

2024-02-01 18:10:12 710 1

原创 DCAI感知机算法——PU learning

最近在学习DCAI,其中提到了PU learning,这个是从机器学习中的感知机算法推演过来的,这里就对其进行一个介绍和算法上的数学推导。

2024-01-31 18:22:17 805

原创 DeepPSP介绍及复现错误解决

文章的核心内容是介绍了一种新的深度神经网络模型——DeepPSP,用于预测蛋白质磷酸化位点。蛋白质磷酸化是蛋白质翻译后修饰(Post-translational modification, PTM)的一种重要形式,对于细胞信号传导、基因表达调控等生物过程具有关键作用。异常的磷酸化水平与多种疾病,如癌症、神经退行性疾病等有关。因此,准确预测蛋白质的磷酸化位点对于理解生物过程和药物设计具有重要意义。DeepPSP模型包含两个并行模块,分别用于提取蛋白质序列的局部和全局特征。

2024-01-30 23:05:21 935 1

原创 DeepPhos微调指南

win1 = 51win2 = 33win3 = 15在构建模型的时候,nb_epoch设置为0,则模型就算传入数据,也不会训练。这里也加入了我之前训练的一个模型STY.h5,也就是除了我训练的模型的最后一层,其他层的参数都已经传入这个model中。这里选择把从倒数第4层flatten_1到倒数第二层给冻结了,倒数第一层因为论文作者原意是想重新训练分类器所以就选择可训练,最后fit数据就可以了。

2024-01-29 16:35:33 1490

原创 功能强大、全开源、保护隐私个人PDF工具箱——Stirling-PDF

Stirling-PDF 是一个由 Stirling-Tools 开发的工具,它专注于处理 PDF 文件。这个工具提供了一系列的功能,旨在帮助用户更有效地管理和操作 PDF 文档。PDF 转换:Stirling-PDF 支持将 PDF 文件转换为其他格式,如 Word、Excel、PowerPoint 等,以及从这些格式转换回 PDF。PDF 编辑:工具提供了编辑 PDF 的功能,包括添加、删除、重排页面,以及编辑文本和图像。

2024-01-28 22:30:41 863

原创 Docker安装指南 2024.01.26

Docker是一个开源的容器化平台,它可以帮助开发人员和运维人员更轻松地构建、打包、分发和运行应用程序。通过使用Docker,您可以将应用程序及其所有依赖项打包到一个称为容器的独立单元中。这使得应用程序在不同的环境中具有一致的运行方式,并且可以在不同的计算机上进行部署和扩展。轻量级:Docker容器与传统虚拟机相比更轻量级,因为它们共享主机操作系统的内核。可移植性:Docker容器可以在任何支持Docker的平台上运行,无论是开发环境、测试环境还是生产环境。

2024-01-26 23:59:52 807

原创 DeepPhos代码复现流程

本文复现蛋白质磷酸化领域经典论文DeepPhos:《DeepPhos: prediction of protein phosphorylation sites with deep learning》,发表在《Bioinformatics》期刊上,由Fenglin Luo、Minghui Wang、Yu Liu、Xing-Ming Zhao和Ao Li共同撰写。文章提出了一种名为DeepPhos的新型深度学习架构,用于预测蛋白质磷酸化位点。磷酸化是蛋白质翻译后修饰中研究最广泛的类型,对多种生物过程至关重要。

2024-01-26 14:54:06 1578 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除