WRF-Chem在大气环境(PM2.5、臭氧)、能见度、城市化方面应用

随着我国经济快速发展,我国面临着日益严重的大气污染问题。近年来,严重的大气污染问题已经明显影响国计民生,引起政府、学界和人们越来越多的关注。大气污染是工农业生产、生活、交通、城市化等方面人为活动的综合结果,同时气象因素是控制大气污染的关键自然因素。大气污染问题既是局部、当地的,也是区域的,甚至是全球的。本地的污染物排放除了对当地造成严重影响外,同时还会在动力输送作用下,极大地影响下风向地区的大气环境状况。数值模式模拟是分析大气污染物时空分布和成分贡献的重要工具,利用模拟结果可以分析大气污染的来源、成因、污染程度、持续时间、主要成分、相对贡献等问题,有助于分析并合理控制污染源排放,为产业调整提供参考。模拟结果可以分析跨区域的污染物输送问题,可以计算碳、氮等成分的干湿沉降通量,由此估算大气污染物对植被和土壤等生态系统的潜在影响。模拟结果还可以在环境及能源评估、环境评价和规划、产业结构、环境承载容量变化、生态系统稳定性和变化等领域进行进一步的解析再应用。但是鉴于该模式同时涉及自然因素(气象)和人为因素(污染物排放),模式结构复杂、运行及处理难度大。

1、掌握WRF-Chem模式原理、调试、运行方法。

2、通过案例操作掌握WRF-Chem模式数据准备、前处理及相关参数设置方法

3、掌握模拟结果后处理及作图(ARWPOST、NCL等软件操作)方法

4、通过案例分析操作掌握WRF-Chem在大气环境(PM2.5、臭氧)、能见度、城市化方面应用

5、本课程针对学员实际项目中遇到的问题进行指导。

区域气象-大气化学在线耦合模式(WRF/Chem)在大气环境领域实践技术应用

第一部分、WRF-Chem模式应用案例和理论基础

1、WRF-Chem模式在大气环境(PM2.5、臭氧、能见度)、生态(污染物/元素成分的干湿沉降)等领域的应用个例解析

2、WRF-Chem模式总体框架、功能讲解3

3、模式安装对操作系统环境依赖性及模式数据讲解

第二部分、Linux环境配置及WRF-CHEM

1、Linux系统入门及基本操作 ,熟悉Linux基本操作命令

2、编译器及Linux环境变量的配置

3、WRF-Chem前置依赖软件和数据可视化软件的安装

第三部分、WRF-Chem模式编译,排放源制作

1、WRF-Chem编译

2、气象数据预处理模块WPS

3、前处理模块WPS主要功能、参数、静态数据和再分析气象资料的介绍

4、WRF-Chem模式物理过程、气相化学机制和气溶胶模拟方案

5、排放源数据讲解及处理(包括EDGAR,FINN等主流清单数据库)

第四部分、WRF-Chem数据准备(气象、排放、初边界条件等),案例实践

1、结合实例讲解及模式运行

例1,MOZART化学机制;例2,CBMZ化学机制

排放源数据准备(人为、生物源):人为排放源处理程序(convert_emiss.exe、meic2wrf等),生物源处理(MEGAN)

初边界条件的必要性和具体设置

WRF-Chem变量表讲解

模式运行控制文件namelist.input设置方法

2、练习:采用MOZART或CBMZ机制运行个例

3、嵌套运行

4、野火排放数据使用

第五部分、模拟结果提取、数据可视化

1、模式结果提取及数据可视化(NCL、ARWPOST等软件)

2、在相关研究和业务工作中的使用(臭氧、PM2.5相关科研、规划预估等)

3、WRF-Chem版本问题、高分辨率模拟设置注意事项(讨论)

4、问题讨论、答疑

全流程WRF高精度气象模拟技术及在地学领域中的实践应用

区域气象-大气化学在线耦合模式(WRF/Chem)在大气环境领域实践技术应用

WRFDA资料同化实践技术应用

空气质量预报模式系统(wrf-cmaq)改进与污染源排放清单

系统学习CMAQ空气质量模式实践技术应用

基于全球模式比较计划CMIP6与区域气候-化学耦合模式WRF-Chem的未来大气污染变化模拟

气象水文耦合模式WRF-Hydro前处理、运行及实践应用

(WRF-UCM)高精度城市化气象动力模拟技术与案例实践应用

双碳目标下太阳辐射预报模式【WRF-SOLAR】模拟方法及改进技术在气象、农林生态、电力等相关领域中的实践应用

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研的力量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值