5.小华爬泰山

视频讲解:小华爬泰山_哔哩哔哩_bilibili


解题思路:

1. 在爬楼梯的基础上设置了陷阱,那么在每一次计算当前楼梯的方案数的前提下,一定要判断这个楼梯是否是陷阱,如果是陷阱,则方案数为0,而不能在全部计算完以后才将m个阶梯的方案数设为0(想想为什么)?

2.接下来就是处理陷阱楼梯,可以使用打标记的方案,设置一个布尔数组,将陷阱的楼梯全部标记为1,方便步骤1的判断

3.解决初始化的问题,一步可以上1级,2级,3级楼梯,那么上第一级台阶的方案数为1,第二级的方案数为2,第3级的方案数为4(1,1,1,1),(2,1),(1,2),(3)种,在这里要想一下,如果陷阱台阶出现在这三个初始化的台阶上的时候会有什么情况呢?

4.特殊判断:

(1)当第一级台阶是陷阱的话,dp[1]=0;

(2)当第二级台阶是陷阱的话,dp[2]=0;

(3)当第一级台阶是陷阱,第二级不是的时候,dp[1]=0,dp[2]=1;

(4)当第三级台阶是陷阱的话,dp[3]=0;

(5)当第一级不是陷阱,第二不是陷阱,第三不是陷阱的话dp[3]=4;

(6)当第一级是陷阱,第二不是陷阱,第三不是陷阱的话dp[3]=2;

(7)当第一级不是陷阱,第二级是陷阱的话,第三不是陷阱的话dp[3]=2;

(8)当第一阶是陷阱,第二级是陷阱,第三不是陷阱的话dp[3]=1;

   至此,初始化完成。

5,接下来就是挨个判断以后的台阶


#include<bits/stdc++.h>
using namespace std;
bool flag[5000];
const int mod=100003;
long long dp[5000]; 
int main()
{
	int n,m,x;
	cin>>n>>m;
	
	for(int i=1;i<=m;i++)
	{
		cin>>x;
		flag[x]=1;//表示x号楼梯是陷阱 
	}
	
	dp[1]=1;//初始化 
	dp[2]=2;
	dp[3]=4;
	
	if(flag[1]==1)//如果台阶1是陷阱 
	{
		dp[1]=0;//台阶1方案数为0 
		if(flag[2]==1)//如果台阶2也是陷阱 
		{
			dp[2]=0;//台阶2的方案数为0 
			dp[3]=1;//台阶3的方案数为1 
		}
		else//如果台阶2不是陷阱的话 
		{
			dp[2]=1;//台阶2的方案数为1 
			dp[3]=2;//台阶3的方案数为2 
		}
	}
	else//如果台阶1不是陷阱的话 
	{
	    if(flag[2]==1)//如果台阶2是陷阱
		{
			dp[2]=0;//台阶2的方案数为0 
			dp[3]=2;//台阶3的方案数为2 
		}
	}
	if(flag[3]==1)//如果台阶3是陷阱 
	dp[3]=0;//台阶3的方案数为0 
	
	for(int i=4;i<=n;i++)
	{
		if(flag[i]!=1)
		dp[i]=(dp[i-1]%mod+dp[i-2]%mod+dp[i-3]%mod)%mod;
	}
	if(dp[n]==0)
	cout<<-1;
	else
	cout<<dp[n];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值