博客摘录「 CNN+LSTM+Attention实现时间序列预测」2024年1月11日

CNN模型;第一层是输入层。规定输入数据的格式(批大小,时间步数,特征维度),将批大小默认为1,时间步数记为t,特征维度记为n,则一条样本可表示为一个实数序列矩阵Rt×n,记xi 为Rt×n 中第i个时间步数据的向量表示。第二层是卷积神经网络层(CNN 层)。CNN 层可以提取数据中不同特征值之间的空间联系,进而弥补 LSTM 无法捕获数据空间分量的缺点,同时它提取出的特征仍然具有时序性。样本数据进入CNN 层中会依次进行卷积、池化和节点展开(降维)操作。针对序列数据,本模型采取一维卷积,卷积核只按照单一的时域方向进行卷积。

该模型的CNN卷积层(Conv1D)使用3*3的窗口进行卷积,还包含50个过滤器(feature maps),激活函数为ReLU,其输出形状为(301),表示30个时间布,每一个时间步有一个特征;最大池化层将输入特征图的空间尺寸减半,有助于减少模型复杂度和防止过拟合;LSTM层使用64LSTM单元,return _sequences=True表示返回完整的序列输出,以便于后续的注意力机制,其中Dropout层应用20%的随机失活(dropout)以减少过拟合;注意力层(Attention)使用自定义的Attention模块来加权每个时间步的LSTM输出,为了增加基础模型对关键信息的关注,需先使用Flatten层将LSTM输出展平,将其转换为一维特征向量,接着接上一个全连接层(Dense)作为输出层,仅含一个节点,同时应用sigmoid激活函数,适合二分类问题。如果任务是回归,则将可以把激活函数改为线性或是 reluCNN-LSTM-Attention的模型如2.4

2.4 CNN-LSTM-Attention模型图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值