python纯手写梯度下降的线性回归

机器学习已经学了挺长一段时间了,虽然也会一点pytorch,但是调库始终感觉隔靴搔痒,对于一些基本的原理似懂非懂,所以今天手写一个简单的线性回归,尝试一下手写数据(而非批量生成),人工求导(而非自动微分),for循环计算(而非numpy矩阵乘),最后发现也并不难。

整个代码重点就一个,求(y_predict - y)**2对于w 和b的偏导数并用于更新w, b,感兴趣的同学可以手算看看,挺简单。

import matplotlib.pyplot as plt
import random
import math

x = [12.3, 14.3, 14.5, 14.8, 16.1, 16.8, 16.5, 15.3, 17.0, 17.8, 18.7, 20.2, 22.3, 19.3, 15.5, 16.7, 17.2, 18.3, 19.2,
     17.3, 19.5, 19.7, 21.2, 23.04, 23.8, 24.6, 25.2, 25.7, 25.9, 26.3]
y = [11.8, 12.7, 13.0, 11.8, 14.3, 15.3, 13.5, 13.8, 14.0, 14.9, 15.7, 18.8, 20.1, 15.0, 14.5, 14.9, 14.8, 16.4, 17.0,
     14.8, 15.6, 16.4, 19.0, 19.8, 20.0, 20.3, 21.9, 22.1, 22.4, 22.6]

def drawTheLine(w, b):
     plt.scatter(x, y)
     x_p = [x for x in range(int(max(x)))]
     y_p = [w*x + b for x in range(int(max(x)))]
     plt.plot(x_p, y_p)
     plt.show()


#定义一个结构数据保存最优结果
class LocalBestParams():
     def __init__(self, w, b, loss):
          self.w = w
          self.b = b
          self.loss = loss

     def updateParams(self, w, b, loss):
          self.w = w
          self.b = b
          self.loss = loss


w = random.randint(0, int(max(y)//min(x)))
b = random.randint(0, int(max(y)))

batch_size = 2
lr = 0.001

epoch = len(x)//batch_size
print(f"len of x = {len(x)}")


for j in range(epoch):
     loss_sum = 0
     x_sum = 0
     y_sum = 0
     for k in range(batch_size):
               i = j*batch_size + k
               y_pred = w * x[i] + b

               #get loss with mean square error 
               loss_sum += (y_pred - y[i]) ** 2
               #loss_sum += math.sqrt((y_pred - y[i]) ** 2)
               x_sum += x[i]
               y_sum += y[i]

               if (i == 0):
                    localBestParams = LocalBestParams(w, b, loss_sum)

     #get mean data in each batch to decrease noise
     loss_mean = loss_sum / batch_size
     x_mean = x_sum / batch_size
     y_mean = y_sum / batch_size

     #save the local best parameters 
     if (loss_mean < localBestParams.loss):
          localBestParams.updateParams(w, b, loss_mean)

     print(f"epoch = {j} ")
     print(f"y = {w}*x + {b} ")
     print(f"loss_mean = {loss_mean}")
     print(f" ")
     drawTheLine(w, b)

     #calculate the update value in each epoch
     w_delta = 2*(w*x_mean + b -y_mean) * x_mean
     b_delta = 2 * (w * x_mean + b - y_mean)

     #update the parameters
     w = w - lr*w_delta
     b = b - lr*b_delta

print("train finished")
print(f"the best fit function is: y = {localBestParams.w} * x + {localBestParams.b}, its loss = {localBestParams.loss}" )

代码运行起来后会弹出拟合直线与散点图,手动关掉后开始下一轮运行,方便观察每轮更新的效果。

以下是第一次运行的结果(随机初始值):

上面这个初始拟合直线数据的趋势几乎没什么关系。

以下是第8次运行结果(更新后的参数):

第八次运行结果已经可以看出趋势正在逐渐逼近,才更新参数8次就已经拟合得很好了(不过由于每次参数随机,看运气)。

最后最好的结果如下:

总结:

  1. 不依赖调库的线性回归实现起来并不难,只需要几十行代码,十几轮“训练”就能满足要求(当然也可以增加训练轮次以达到更好的效果)。
  2. 调试过程中实测将learn rate改成0.01会导致不收敛,由此可见超参数对结果的影响真的挺大,虽然不知道收敛和不收敛的边界值在哪,但超参数的设置还需要一些经验和参考才能保证得到较好的结果。
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以帮你手写线性回归代码并进行实验评估。以下是代码实现: ```python import numpy as np import matplotlib.pyplot as plt class LinearRegression: def __init__(self, learning_rate=0.01, num_iterations=1000): self.learning_rate = learning_rate self.num_iterations = num_iterations self.weights = None self.bias = None def fit(self, X, y): # Initialize weights and bias n_samples, n_features = X.shape self.weights = np.zeros(n_features) self.bias = 0 # Gradient descent for i in range(self.num_iterations): y_pred = np.dot(X, self.weights) + self.bias dw = (1 / n_samples) * np.dot(X.T, (y_pred - y)) db = (1 / n_samples) * np.sum(y_pred - y) self.weights -= self.learning_rate * dw self.bias -= self.learning_rate * db def predict(self, X): y_pred = np.dot(X, self.weights) + self.bias return y_pred def mse(self, y_pred, y_true): return np.mean((y_pred - y_true) ** 2) ``` 这里我们使用梯度下降法来学习线性回归模型的参数。在训练过程中,我们计算预测值与真实值之间的误差,并通过计算梯度来更新权重和偏置。 下面我们来用一个简单的实例来测试我们的代码: ```python # Generate some random data np.random.seed(0) X = np.random.rand(100, 1) y = 2 + 3 * X + np.random.randn(100, 1) # Split data into training and test sets X_train, X_test = X[:80], X[80:] y_train, y_test = y[:80], y[80:] # Train the model model = LinearRegression() model.fit(X_train, y_train) # Make predictions on test set y_pred = model.predict(X_test) # Evaluate the model mse = model.mse(y_pred, y_test) print("Mean Squared Error:", mse) # Plot the results plt.scatter(X_test, y_test, color='blue') plt.plot(X_test, y_pred, color='red') plt.show() ``` 这里我们生成了一些随机数据,并将其分为训练集和测试集。然后我们训练模型并在测试集上进行预测。最后,我们计算模型的均方误差并绘制真实值和预测值之间的关系图。 你可以根据自己的需要更改参数,并使用不同的数据集来测试模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值