通过一个数的数值n推导出它的最高位数k,即k=θ(log(n))

        在基数排序中,我们需要将待排序数列按照其每一位的值进行排序。如果待排序数列中的最大值是n,我们就需要对每一位进行排序,从低位到高位,直到最高位。因此,我们需要知道待排序数列中的最大位数k,才能进行排序。

        基数排序的时间复杂度为θ(k*n),而题目中往往不会直接给出最大数值n的位数。所以我们需要通过一个数的数值n推导出它的位数k,从而计算出更加准确的时间复杂度。

        假设我们使用r进制,因此,如果一个数的最高位是k位(0~k),那么它的值最大为r^k-1。因此,如果待排序数列中的最大值是n,那么它的最高位是k位,满足以下不等式:

r^{k-1}\leqslant n\leqslant r^k-1

对不等式两边同时取对数(以下只展示上界的证明),得到:

k*log(r)\leq logn+1

经转换:

k\geqslant \frac{logn+1}{logr}

        因此,可以得到k的上界为:k=O(logn),同理可推得k的下界也为logn。

        故一个数值为n的数与其位数k的关系为:k=θ(log(n))

例:计算对于以下元素个数均为n的数组进行基数排序的时间复杂度(数值采用十进制)

(a)[1...n],θ(k*n)=θ(n*lgn)

(b)[1…n²],θ(k*n)=θ(n*2*lgn)=θ(n*lgn)

(c)[1…2^n],θ(k*n)=θ(n*n*lg2)=θ(n^2)


如有疑惑和错误,欢迎讨论与指正啊!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值