自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 【ego_planner】源码解读 run_in_sim.launch

定义基本的参数(如地图尺寸、里程计主题)。包含其他launch文件(如和),并传递参数。(轨迹服务器)和(航点生成器)。配置与无人机路径规划相关的主题、参数和模拟器。<arg>在文件开头,定义了一些全局参数,这些参数可以通过$(arg 参数名)在launch文件中其他地方引用。地图尺寸map_size_x:地图在x方向的大小,单位为米,默认为40.0。map_size_y:地图在y方向的大小,单位为米,默认为40.0。map_size_z:地图在z方向的大小,单位为米,默认为3.0。

2025-03-05 16:15:18 1092

原创 [CMU16-745] Lecture 7 The Linear Quadratic Regulator

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture 6 Deterministic Optimal Control Introduction The LQR problem can be formulated as: min⁡x1:N,u1:N−1J=∑k=1N−1(12xkTQkxk+12ukTRuk)+12xNTQNxN \min_{x_{1:N}, u_{1:N-1}} J = \sum_{k=1}^{N-1} \

2025-02-13 17:04:21 725

原创 [CMU16-745] Lecture 6 Deterministic Optimal Control Introduction

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture 5 Optimization Part 3 min⁡x(t),u(t)J(x(t),u(t))=∫t0tfℓ(x(t),u(t)) dt+ℓF(x(tf))s.t.x˙(t)=f(x(t),u(t)) \min_{x(t), u(t)} J(x(t), u(t)) = \int_{t_0}^{t_f} \ell(x(t), u(t)) \, dt + \ell_F(x(

2025-02-01 16:44:51 1135

原创 [CMU16-745] Lecture 5 Optimization Part 3

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture 4 Optimization Part 2 Algorithms for constrained minimizationFormulation: min⁡xf(x)s.t. c(x)≤0\min_x f(x) \quad \text{s.t. } c(x) \leq 0xmin​f(x)s.t. c(x)≤0Key points:Replace inequality

2025-01-24 20:38:07 1071

原创 [CMU16-745] Lecture 4 Optimization Part 2

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture 3 Optimization Part 1 Δx\Delta \mathbf{x}Δx step from Newton’s method may overshoot the minimum. To fix this, check f(x+Δx)f(\mathbf{x} + \Delta \mathbf{x})f(x+Δx) and “backtrack” until

2025-01-07 18:34:53 1527

原创 [CMU16-745] Lecture 3 Optimization Part 1

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture2 Dynamics Discretization and Stability ∂f∂x=[∂f∂x1⋯∂f∂xn]∈R1×n\frac{\partial f}{\partial x} = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n}\right] \in \mat

2025-01-02 11:11:14 1374

原创 [CMU16-745] Lecture 2 Dynamics Discretization and Stability

Source: CMU 16-745 Study Notes, taught by Prof. Zac ManchesterLecture1 Continuous-Time Dynamics In general, it is not possible to solve x˙=f(x)\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})x˙=f(x) for x(t)\mathbf{x}(t)x(t) analytically. Therefore, numerical met

2024-12-28 22:33:39 1061

原创 [CMU16-745] Lecture1 Continuous-Time Dynamics

本文结合CMU 16-745课程内容,总结了连续时间动力学。通过具体示例,介绍了如何建模系统动态、分析平衡点以及进行稳定性分析。

2024-12-25 12:58:56 965

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除