一元向量值函数及其导数
定义1:设集 D⊂R ,则称映射 f:D→ 为 一元向量值函数一元向量值函数_ .通常记为
=
,t∈D ,其中数集 D 称为函数的定义域, t 称为函数的定义域, t 称为自变量,
称为因变量。
定义2:设向量值函数在点 t0 的某一去心邻域内有定义,如果存在一个常向量
,对于任意给定的正数 ε ,总存在正数 δ ,使得当 t 满足 0<|t−
|<δ 时,对应的函数值
都满足不等式: |
−
|<ε .那么常向量
就叫做 向量值函数当时的极限向量值函数
当t→
时的极限_ ,记作:
或
七条求导法则:
彩色粉笔为向量;
例题:
注意:切向量有方向,得出的值可能为正,可能为负
空间曲线的切线与法平面
空间曲面的切平面和法线
例题: