多元函数微分学的几何应用

一元向量值函数及其导数

 定义1:设集 D⊂R ,则称映射 f:D→R^{n} 为 一元向量值函数一元向量值函数_ .通常记为\vec{r}=\vec{f}(t),t∈D ,其中数集 D 称为函数的定义域, t 称为函数的定义域, t 称为自变量, \vec{r} 称为因变量。

​ 定义2:设向量值函数\vec{f}(t)在点 t0 的某一去心邻域内有定义,如果存在一个常向量 \vec{r_{0}} ,对于任意给定的正数 ε ,总存在正数 δ ,使得当 t 满足 0<|t−t_{0}|<δ 时,对应的函数值 \vec{f}(t)都满足不等式: |\vec{f}(t)\vec{f}(t_{0})|<ε .那么常向量 \vec{r_{0}} 就叫做 向量值函数当时的极限向量值函数\vec{f}(t)当t→t_{0}时的极限_ ,记作: \lim_{t-t_{0}}\vec{f}(t)=\vec{r_{0}}\vec{f}(t)\rightarrow \vec{r_{0}},t\rightarrow t_{0}

七条求导法则:

 

彩色粉笔为向量;

 例题:

 注意:切向量有方向,得出的值可能为正,可能为负


空间曲线的切线与法平面 

 

 

 


空间曲面的切平面和法线 

 

 例题:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值