逆矩阵的概念与性质
定理1
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1
性质:
定理3
设A为n阶矩阵,则下列各命题等价:
1.A是可逆的; |
2.AX=0只有零解; |
3.A与I行等价; |
4.A可表为有限个初等矩阵的乘积。 |
注意: 初等矩阵的逆也是初等矩阵
定理1
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1
性质:
定理3
设A为n阶矩阵,则下列各命题等价:
1.A是可逆的; |
2.AX=0只有零解; |
3.A与I行等价; |
4.A可表为有限个初等矩阵的乘积。 |
注意: 初等矩阵的逆也是初等矩阵