7 E. Block Sequence
链接
题意
一个数组删除最少的数使数组变为美丽的
美丽的定义:
第一个数是长度看,后面k是k个数。
题解
考虑dp
f
[
i
]
f[i]
f[i]表示将从i到n的所有数都变成美丽的花费最小
转移
f
[
i
]
=
m
i
n
(
f
[
i
+
1
]
+
1
,
f
[
i
+
a
[
i
]
+
1
]
)
;
f[i]=min(f[i+1]+1,f[i+a[i]+1]);
f[i]=min(f[i+1]+1,f[i+a[i]+1]);
初始化:
f
[
n
]
=
1
;
f[n]=1;
f[n]=1;
f
[
n
+
1
]
=
0
f[n+1]=0
f[n+1]=0:这里表示一个都不删从第一个到第n个恰好是美丽的
这个是从后往前推,所以是倒序循环。
答案就是
f
[
1
]
f[1]
f[1]
代码
#include <bits/stdc++.h>
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back
using namespace std;
void solve() {
int n;
cin>>n;
vector<int>a(n+2);
rep(i,1,n){
cin>>a[i];
}
vector<int>f(n+2);
f[n]=1;
f[n+1]=0;
fep(i,n-1,1){
f[i]=f[i+1]+1;
if(i+a[i]<=n){
f[i]=min(f[i],f[i+a[i]+1]);
}
}
cout<<f[1]<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
// freopen("1.in", "r", stdin);
int _;
cin>>_;
while(_--)
solve();
return 0;
}
总结
非常不错的一道dp题目。
给自己的启发是dp的顺序不止能从前往后,也可以逆序,只要初始化好状态。