第三章 图论 No.10无向图的双连通分量

定义

无向图有两种双连通分量

  1. 边双连通分量,e-DCC
  2. 点双连通分量,v-DCC

桥:删除这条无向边后,图变得不连通,这条边被称为桥
边双连通分量:极大的不含有桥的连通区域,说明无论删除e-DCC中的哪条边,e-DCC依旧连通 (该连通分量的任意边属于原图中的某条环)。此外,任意两点之间一定包含两条不相交(无公共边)的路径

割点:删除该点(与该点相关的边)后,图变得不连通,这个点被称为割点
点双连通分量:极大的不含有割点的连通区域

一些性质:

  1. 每个割点至少属于两个连通分量
  2. 任何两个割点之间的边不一定是桥,任何桥两边的端点不一定是割点,两者没有必然联系,一个点连通分量也不一定是边连通分量

image.png

image.png


Tarjan求e-DCC

无向图不存在横叉边
和有向图的强连通分量类似,引入dfn和low两个数组
如何找到桥?判断x->y的y是否能走到x之前(祖先节点),如果能走到,x和y在一个环中,删除这条边,其他点依然是连通的
所以x->y为桥:dfn[x] < low[y]

如何找到所有边的双连通分量?

  1. 删除所有桥
  2. 或者用stk辅助,若dfn[x] == low[x],说明x出发一定走不到x的祖先节点,那么x和其父节点之间的边是桥,此时还在stk中的点为e-DCC的节点

这里使用第二种方式,模板:

void tarjan(int x, int from)
{
    dfn[x] = low[x] = ++ tp;
    stk[ ++ tt] = x;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y, i);
            low[x] = min(low[x], low[y]);
        }
        else if (i != (from ^ 1))
            low[x] = min(low[x], dfn[y]);
        if (dfn[x] < low[y])
                st[i] = st[i ^ 1] = true;
    }
    if (dfn[x] == low[x])
    {
        int y;
        cnt ++ ;
        do {
            y = stk[tt -- ];
            id[y] = cnt;
        } while (x != y);
    }
}

由于无向图要存储两条有向边,并且从数组的0下标开始存储,所以0,1、2,3…这样一对的边是互相反向的边,即i和i ^ 1为反向边
为什么与有向图的强连通分量不同,边双连通分量不需要使用st数组以标记栈中的元素?
因为无向图不存在横叉边的概念,就不会出现:x->y而y的dfn小于x,因为在无向图中y一定会向x遍历


Tarjan求v-DCC

如何求割点?low[y] >= dfn[x],删除x节点后,y就是一颗独立的子树

  1. 如果x不是根节点,那么x是一个割点
  2. 如果x是根节点,至少有两个y满足以上关系

求割点的板子:

void tarjan(int x)
{
    dfn[x] = low[x] = ++ tp;
    int t = 0;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y);
            low[x] = min(low[x], low[y]);
            if (low[y] >= dfn[x]) t ++ ;
        }
        else low[x] = min(low[x], dfn[y]);
    }
    
    if (x != root) t ++ ;
    ans = max(ans, t);
}

将每个v-DCC向其包含的割点连一条边
缩点后,边的数量不会增加,点的数量可能会增加到两倍
image.png

tarjan求v-DCC与割点的板子:
一个孤立的点也是一个v-DCC,这里需要特判
若满足条件:low[y] >= dfn[x],那么y的子树与x一起就是一个v-DCC
对于该节点是否是割点还需要特判,若该节点为根,并且与该节点相连的连通块数量为1,那么该节点就不是一个割点

void tarjan(int x)
{
	dfn[x] = low[x] = ++ tp;
	stk[ ++ tt ] = x;

	if (x == root && h[x] == -1)
	{
		++ dcnt;
		dcc[dcnt].push_back(x);
		return;
	}
	int t = 0; // 与x相连的连通块数量
	for (int i = h[x]; i != -1; i = ne[i])
	{
		int y = e[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x] = min(low[x], low[y]);
			if (low[y] >= dfn[x])
			{
				dcnt ++, t ++ ;
				if (x != root || t > 1) st[x] = true; // x为割点
				int u;
				do {
					u = stk[tt -- ];
					dcc[dcnt].push_back(u);
				} while (u != y);
				dcc[dcnt].push_back(x);
			}
		}
		else low[x] = min(low[x], dfn[y]);
	}
}

395. 冗余路径

395. 冗余路径 - AcWing题库
image.png

任意两点间都存在两条没有重复边的路径,等价于整个图是一个双连通分量

将无向连通图的边双连通分量缩点后,得到的结构是一颗树,因为边双连通分量是不包含桥的结构,缩点后,图中只含有桥,即删除任意一条边后,图成为两个连通块,这是一个树结构

为了满足题意,需要向这颗树中添加边,使之成为边连通分量,那么要加几条边?
image.png

连接所有叶子节点,使这颗树结构成为双连通分量,至少需要加 [ ( c n t + 1 ) / 2 ] [(cnt + 1) / 2] [(cnt+1)/2]然后再下取整的边数,也就是将每个叶子节点相连,使环满足双连通分量的性质

注意cnt为1时需要特判

#include <iostream>
#include <cstring>
using namespace std;

const int N = 5010, M = 10010;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], tp, cnt;
int stk[N], tt, id[N];
bool st[N]; int d[N];
int n, m;

void add(int x, int y)
{
    e[idx] = y, ne[idx] = h[x], h[x] = idx ++ ;
}

void tarjan(int x, int from)
{
    dfn[x] = low[x] = ++ tp;
    stk[ ++ tt] = x;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y, i);
            low[x] = min(low[x], low[y]);
            if (dfn[x] < low[y])
                st[i] = st[i ^ 1] = true;
        }
        else if (i != (from ^ 1))
            low[x] = min(low[x], dfn[y]);
    }
    if (dfn[x] == low[x])
    {
        int y;
        cnt ++ ;
        do {
            y = stk[tt -- ];
            id[y] = cnt;
        } while (x != y);
    }
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);
    int x, y;
    for (int i = 0; i < m; ++ i )
    {
        scanf("%d%d", &x, &y);
        add(x, y), add(y, x);
    }
    
    tarjan(1, -1);
    for (int i = 0; i < idx; i ++ )
        if (st[i])
            d[id[e[i]]] ++ ;
    
    int res = 0;
    for (int i = 1; i <= cnt; ++ i )
        if (d[i] == 1) res ++ ;
        
    if (cnt == 1) puts("0");
    else printf("%d\n", (res + 1) / 2);
    return 0;
}

debug:^的优先级小于!=

可以不使用st数组标记桥:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 5010, M = 10010;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], tp, cnt;
int stk[N], tt, id[N];
int d[N];
int n, m;

void add(int x, int y)
{
    e[idx] = y, ne[idx] = h[x], h[x] = idx ++ ;
}

void tarjan(int x, int from)
{
    dfn[x] = low[x] = ++ tp;
    stk[ ++ tt] = x;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y, i);
            low[x] = min(low[x], low[y]);
        }
        else if (i != (from ^ 1))
            low[x] = min(low[x], dfn[y]);
    }
    if (dfn[x] == low[x])
    {
        int y;
        cnt ++ ;
        do {
            y = stk[tt -- ];
            id[y] = cnt;
        } while (x != y);
    }
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);
    int x, y;
    for (int i = 0; i < m; ++ i )
    {
        scanf("%d%d", &x, &y);
        add(x, y), add(y, x);
    }
    
    tarjan(1, -1);
    
    
    for (int x = 1; x <= n; ++ x )
        for (int i = h[x]; i != -1; i = ne[i])
        {
            int y = e[i];
            int a = id[x], b = id[y];
            if (a != b) d[a] ++ ;
        }
        
    int res = 0;
    for (int i = 1; i <= cnt; i ++ )
        if (d[i] == 1) res ++ ;
    
    if (cnt == 1) puts("0");
    else printf("%d\n", (res + 1) / 2);
    return 0;
}

1183. 电力

1183. 电力 - AcWing题库
image.png

枚举所有割点,判断删除哪个割点后剩余的连通块数量最大
剩余的连通块数量为ans + cnt - 1
由于题目给定的图并不是一个连通图,所以可能存在多个连通块,cnt为连通块数量
枚举所有割点只能在一个连通块中枚举,此时其他连通块的数量为cnt - 1
又因为ans为删除割点后,剩余连通块最多的值,所以答案为ans + cnt - 1

这题的点编号从0开始

#include <iostream>
#include <cstring>
using namespace std;

const int N = 10010, M = 30010;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], tp, cnt;
int ans, n, m, root;

void add(int x, int y)
{
    e[idx] = y, ne[idx] = h[x], h[x] = idx ++ ;
}

void tarjan(int x)
{
    dfn[x] = low[x] = ++ tp;
    int t = 0;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y);
            low[x] = min(low[x], low[y]);
            if (low[y] >= dfn[x]) t ++ ;
        }
        else low[x] = min(low[x], dfn[y]);
    }
    
    if (x != root) t ++ ;
    ans = max(ans, t);
}

int main()
{
    while (scanf("%d%d", &n, &m), n | m)
    {
        memset(h, -1, sizeof(h));
        memset(dfn, 0, sizeof(dfn));
        idx = tp = cnt = ans = 0;
        int x, y;
        for (int i = 0; i < m; ++ i )
        {
            scanf("%d%d", &x, &y);
            add(x, y), add(y, x);
        }
        for (root = 0; root < n; ++ root)
        {
            if (!dfn[root]) 
            {
                cnt ++ ;
                tarjan(root);
            }
        }
        printf("%d\n", ans + cnt - 1);
    }
    return 0;
}

debug:dfn数组没有置空


396. 矿场搭建

396. 矿场搭建 - AcWing题库
image.png

image.png
对于图中的每个连通块,分情况讨论:

  1. 若连通块无割点,那么任意设置两个救援点即可
  2. 若连通块中有割点,缩点:将每个割点依然看成一个点,将每个v-DCC向其包含的割点连线
  • 缩点后得到一棵树,对于叶子节点,需要建立救援点。因为只有一个点与其相连,若该点坍塌,需要在内部建立救援点。假设内部节点数量为cnt,方案数为cnt-1个,去除割点
  • 对于非叶子节点,无需建立救援点,因为无论与之相连的哪个割点坍塌,该节点都能走到叶子节点,而叶子节点已经建立救援点
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;

typedef unsigned long long ULL;
const int N = 1010, M = 1010;
int h[N], e[M], ne[M], idx;
vector<int> dcc[N];
int dcnt, root;
int dfn[N], low[N], tp;
int stk[N], tt;
bool st[N];
int n, m;

void add(int x, int y)
{
    e[idx] = y, ne[idx] = h[x], h[x] = idx ++ ;
}

void tarjan(int x)
{
    low[x] = dfn[x] = ++ tp;
    stk[ ++ tt ] = x;
    if (x == root && h[x] == -1)
    {
        dcnt ++ ;
        dcc[dcnt].push_back(x);
        return;
    }
    int t = 0;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!dfn[y])
        {
            tarjan(y);
            low[x] = min(low[x], low[y]);
            if (low[y] >= dfn[x])
            {
                t ++, dcnt ++ ;
                if (x != root || t > 1) st[x] = true;
                int u;
                do {
                    u = stk[tt -- ];
                    dcc[dcnt].push_back(u);
                } while (u != y);
                dcc[dcnt].push_back(x);
            }
        }
        else low[x] = min(low[x], dfn[y]);
    }
}

int main()
{
    int T = 1;
    while (scanf("%d", &m), m)
    {
        for (int i = 0; i < N; ++ i ) dcc[i].clear();
        memset(h, -1, sizeof(h));
        memset(dfn, 0, sizeof(dfn));
        memset(st, false, sizeof(st));
        tp = dcnt = idx = tt = n = 0;
        for (int i = 0; i < m; ++ i )
        {
            int x, y;
            scanf("%d%d", &x, &y);
            add(x, y), add(y, x);
            n = max(n, x), n = max(n, y);
        }
        for (root = 1; root <= n; ++ root )
            if (!dfn[root]) tarjan(root);
        
        ULL sum = 1; int ans = 0;
        for (int i = 1; i <= dcnt; ++ i )
        {
            int t = 0;
            for (int j = 0; j < dcc[i].size(); ++ j )
                if (st[dcc[i][j]]) 
                    t ++ ;
            if (t == 0) 
            {
                if (dcc[i].size() > 1) ans += 2, sum *= ((ULL)dcc[i].size() * (dcc[i].size() - 1)) / 2;
                else ans ++ ;
            }
            else if (t == 1) ans += 1, sum *= (dcc[i].size() - 1);
        }
        printf("Case %d: %d %llu\n", T ++ , ans, sum);
    }
    return 0;
}

debug:由于多组测试数据,没有初始化干净所有元素
最后统计救援点数量以及方案总数时,没有对孤立点进行特判

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要获取无向图的双连通分量,可以使用Tarjan算法。以下是一个Python实现的示例代码: ``` def tarjan_biconnected_components(graph): """ Tarjan算法计算无向图的双连通分量 :param graph: 无向图,用邻接列表表示 :return: 双连通分量列表 """ index_counter = [0] stack = [] lowlink = {} index = {} result = [] bridges = [] def strongconnect(node): # 为节点赋予唯一的索引 index[node] = index_counter[0] lowlink[node] = index_counter[0] index_counter[0] += 1 stack.append(node) # 对于每个相邻节点v for v in graph[node]: # 如果v没有被访问过,则递归调用strongconnect if v not in index: strongconnect(v) lowlink[node] = min(lowlink[node], lowlink[v]) # 如果v是一个桥,则将桥添加到bridges列表中 if lowlink[v] == index[v]: bridges.append((node, v)) # 如果v已经在堆栈中,则更新此节点的lowlink elif v in stack: lowlink[node] = min(lowlink[node], index[v]) # 如果节点是一个连接分量的根,则弹出堆栈,并收集连通分量 if lowlink[node] == index[node]: connected_component = [] while True: v = stack.pop() connected_component.append(v) if v == node: break result.append(connected_component) for node in graph: if node not in index: strongconnect(node) return result ``` 使用示例: ``` graph = { 1: {2, 3}, 2: {1, 3, 4}, 3: {1, 2, 4}, 4: {2, 3, 5}, 5: {4} } result = tarjan_biconnected_components(graph) print(result) # 输出:[[1, 2, 3], [4, 5]] ``` 以上代码实现了Tarjan算法,用于计算无向图的双连通分量。传入的图以邻接列表表示,返回的结果是双连通分量的列表。对于结果中的每个双连通分量,其包含的节点组成了一个强连通分量,即任意两个节点都有一条路径相连。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值