给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
结尾无空行
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
结尾无空行
输入样例 2:
2222
结尾无空行
输出样例 2:
2222 - 2222 = 0000
结尾无空行
#include <stdio.h>
void maopao(int a[],int len){//冒泡法排序
int i,j,p;
for(i=0;i<len-1;i++){
for(j=0;j<len-i-1;j++){
if(a[j]<a[j+1]){
p = a[j];
a[j] = a[j+1];
a[j+1] = p;
}
}
}
}
int main(){
int N,a,b,c,d,m[4],x,y,z=0;
scanf("%d",&N);
a = N%10; b = (N/10)%10 ; c=(N/100)%10 ; d = N/1000;
if(a==b&&b==c&&c==d){
printf("%.4d - %.4d = 0000",N,N);
return 0;
}
m[0] = d;m[1] = c;m[2] = b;m[3] = a;
while(z!=6174){
maopao(m,4);
x = m[0]*1000+m[1]*100+m[2]*10+m[3]*1;
y = m[3]*1000+m[2]*100+m[1]*10+m[0]*1;
z = x-y;
if(z!=6174){
printf("%.4d - %.4d = %.4d\n",x,y,z);
}else{
printf("%.4d - %.4d = %.4d",x,y,z);
}
m[3] = z%10;m[2] = (z/10)%10;m[1] = (z/100)%10;m[0] = z/1000;
}
return 0;
}