1019 数字黑洞 (20 分)

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个 (0,104) 区间内的正整数 N。

输出格式:

如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:

6767

结尾无空行

输出样例 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

结尾无空行

输入样例 2:

2222

结尾无空行

输出样例 2:

2222 - 2222 = 0000

结尾无空行

#include <stdio.h> 

void maopao(int a[],int len){//冒泡法排序
	int i,j,p;
	for(i=0;i<len-1;i++){
		for(j=0;j<len-i-1;j++){
			if(a[j]<a[j+1]){
				p = a[j];
				a[j] = a[j+1];
				a[j+1] = p;
			}
		}
	}
}

int main(){	
	int N,a,b,c,d,m[4],x,y,z=0;
	scanf("%d",&N);
	a = N%10; b = (N/10)%10 ; c=(N/100)%10 ; d = N/1000;
	if(a==b&&b==c&&c==d){
		printf("%.4d - %.4d = 0000",N,N);
		return 0;
	}
	m[0] = d;m[1] = c;m[2] = b;m[3] = a;
	while(z!=6174){
		maopao(m,4);
		x = m[0]*1000+m[1]*100+m[2]*10+m[3]*1;
		y = m[3]*1000+m[2]*100+m[1]*10+m[0]*1;
		z = x-y;
		if(z!=6174){
			printf("%.4d - %.4d = %.4d\n",x,y,z);
		}else{
			printf("%.4d - %.4d = %.4d",x,y,z);
		}
		m[3] = z%10;m[2] = (z/10)%10;m[1] = (z/100)%10;m[0] = z/1000;
		
	}

	return 0;
	
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值