530.二叉搜索树的最小绝对差
题目
给你一个二叉搜索树的根节点 root
,返回 树中任意两不同节点值之间的最小差值 。
差值是一个正数,其数值等于两值之差的绝对值。
思路
题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。
注意是二叉搜索树,二叉搜索树可是有序的。
遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。
递归
那么二叉搜索树采用中序遍历,其实就是一个有序数组。
在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。
最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。其实在二叉搜素树中序遍历的过程中,用一个pre节点记录一下cur节点的前一个节点,我们就可以直接计算了。
如图:
代码如下(JavaScript)
var getMinimumDifference = function(root) {
let res=Infinity
let preNode=null
//中序遍历
const inorder=(curNode)=>{
if(!curNode) return null
inorder(curNode.left) //左
// 更新res
if(preNode) res=Math.min(res,curNode.val-preNode.val) //中
// 记录前一个节点
preNode=curNode
inorder(curNode.right) //右
}
inorder(root)
return res
};
501.二叉搜索树中的众数
题目
给你一个含重复值的二叉搜索树(BST)的根节点 root
,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。
如果树中有不止一个众数,可以按 任意顺序 返回。
假定 BST 满足如下定义:
- 结点左子树中所含节点的值 小于等于 当前节点的值
- 结点右子树中所含节点的值 大于等于 当前节点的值
- 左子树和右子树都是二叉搜索树
思路
二叉搜索树,既然是搜索树,它中序遍历就是有序的。
如图:
遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。
关键是在有序数组上的话,好搞,在树上怎么搞呢?
这就考察对树的操作了。
在530.二叉搜索树的最小绝对差中我们就使用了pre指针和cur指针的技巧,这次又用上了。
弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。
而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。
if(preNode===null) count=1
else if(preNode.val===curNode.val) count++
else count=1
preNode=curNode
此时又有问题了,因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),如果是数组上大家一般怎么办?
应该是先遍历一遍数组,找出最大频率(maxCount),然后再重新遍历一遍数组把出现频率为maxCount的元素放进集合。(因为众数有多个)
这种方式遍历了两遍数组。
那么我们遍历两遍二叉搜索树,把众数集合算出来也是可以的。
但这里其实只需要遍历一次就可以找到所有的众数。
那么如何只遍历一遍呢?
如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组),代码如下:
if(count===maxCount) res.push(curNode.val)
是不是感觉这里有问题,result怎么能轻易就把元素放进去了呢,万一,这个maxCount此时还不是真正最大频率呢。
所以下面要做如下操作:
频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。
if(count>maxCount){
res=[]
maxCount=count
res.push(curNode.val)
}
代码如下(JavaScript)
var findMode = function(root) {
// 不使用额外空间,使用中序遍历,设置出现最大次数初始值为0
let count=0,maxCount=0
let preNode=null
let res=[]
// 1.确定递归函数及函数参数
const travelTree =(curNode)=>{
// 2. 确定递归终止条件
if(curNode===null) return
travelTree(curNode.left)
// 3. 单层递归逻辑
if(preNode===null) count=1
else if(preNode.val===curNode.val) count++
else count=1
preNode=curNode
if(count===maxCount) res.push(curNode.val)
if(count>maxCount){
res=[]
maxCount=count
res.push(curNode.val)
}
travelTree(curNode.right)
}
travelTree(root)
return res
};
236. 二叉树的最近公共祖先
题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
思路
遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。
那么二叉树如何可以自底向上查找呢?
回溯啊,二叉树回溯的过程就是从低到上。
后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。
接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。
首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:
判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。
那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。
这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p。
但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:
递归三部曲
- 确定递归函数返回值以及参数
如果遇到p或者q,我们要返回最近公共节点,返回值不为空,就说明找到了q或者p。
- 确定终止条件
遇到空的话,因为树都是空了,所以返回空。
- 确定单层递归逻辑
值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。
代码如下(JavaScript)
var lowestCommonAncestor = function (root, p, q) {
//使用递归方法
//因为需要从底向上查找,所以后序遍历
//1.确定递归函数的参数和返回值
const travelTree = (root, p, q) => {
//2.确定终止条件
if (root === null || root === p || root === q) {
return root
}
//3.确定单层递归逻辑
let left = travelTree(root.left, p, q)
let right = travelTree(root.right, p, q)
if (left !== null && right !== null)return root
if (left == null ) return right
return left
}
return travelTree(root, p, q)
};