三种简单的排序算法(简单易懂)
1.冒泡排序
代码实现:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
int a[n];
for(int i=0;i<n;i++)cin>>a[i];
//0~N-1 0~N-2 ...
for(int i=n-1;i>0;i--)//0~i
{
//01 12 23 ... i-1 i
for(int j=0;j<i;j++)
{
if(a[j]>a[j+1])
{
int t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
for(int i=0;i<n;i++)cout<<a[i]<<" ";
cout<<endl;
}
2.选择排序
代码实现:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
int a[n];
for(int i=0;i<n;i++)cin>>a[i];
for(int i=0;i<n;i++)
{
int minIndex=i;
for(int j=i+1;j<n;j++)
{
minIndex=a[j]<a[minIndex]?j:minIndex;
}
int t=a[i];
a[i]=a[minIndex];
a[minIndex]=t;
}
for(int i=0;i<n;i++)cout<<a[i]<<" ";
cout<<endl;
}
3.插入排序
代码实现:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
int a[n];
for(int i=0;i<n;i++)cin>>a[i];
for(int i=1;i<n;i++)//外层循环想让有序的范围从0~0到0~i
{
//0~0 有序的...0~2...0~3...
//0~i 有序
for(int j=i-1;a[j]>a[j+1]&&j>=0;j--)//j+1的位置是要处理的数
{
int t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
for(int i=0;i<n;i++)cout<<a[i]<<" ";
cout<<endl;
}
总结
-
冒泡排序与选择排序的时间复杂度表现与数据状况无关,即无论数据本身在排序前是否有序或无序都不影响时间复杂度。
-
插入排序的时间复杂度与数据状况有关
- eg:若数据本来就是有序的则其时间复杂度为O(n)
-
插入排序在常数级别的表现比冒泡排序和选择排序更优
关于时间复杂度
(算法流程按照最差情况来估计时间复杂度)
- 常数时间的操作
一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。 - 时间复杂度为一个算法流程中,常数操作数量的一个指标。常用0(读作big0)来表示。具体来说,先要对一个算法流程非常熟悉,然后去写出这个算法流程中,发生了多少常数操作,进而总结出常数操作数量的表达式。
- 在表达式中,只要高阶项,不要低阶项,也不要高阶项的系数,剩下的部分如果为f(N),那么时间复杂度为0(f(N))。
- 评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行时间,也就是“常数项时间”。