【三种简单的排序算法:冒泡,选择,插入排序(简单易懂版)】

本文介绍了三种经典的排序算法:冒泡排序、选择排序和插入排序。每种算法都有对应的C++代码实现。冒泡排序和选择排序的时间复杂度在最坏情况下都是O(n^2),而插入排序在最好情况下能达到O(n)。在常数级别性能上,插入排序优于其他两者。理解这些排序算法的时间复杂度对于优化算法效率至关重要。
摘要由CSDN通过智能技术生成

三种简单的排序算法(简单易懂)

1.冒泡排序冒泡排序简述

代码实现:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;cin>>n;
	int a[n];
	for(int i=0;i<n;i++)cin>>a[i];
	//0~N-1  0~N-2 ...
	for(int i=n-1;i>0;i--)//0~i
	{
		//01 12 23 ... i-1 i
		for(int j=0;j<i;j++)
		{
			if(a[j]>a[j+1])
			{
				int t=a[j];
				a[j]=a[j+1];
				a[j+1]=t;
			}
		}
	}
	for(int i=0;i<n;i++)cout<<a[i]<<" ";
	cout<<endl;
} 

2.选择排序

选择排序简述
代码实现:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;cin>>n;
	int a[n];
	for(int i=0;i<n;i++)cin>>a[i]; 
	for(int i=0;i<n;i++)
	{
		int minIndex=i;
		for(int j=i+1;j<n;j++)
		{
			minIndex=a[j]<a[minIndex]?j:minIndex;
		}
		int t=a[i];
		a[i]=a[minIndex];
		a[minIndex]=t;
	}
	for(int i=0;i<n;i++)cout<<a[i]<<" ";
	cout<<endl;
}

3.插入排序

在这里插入图片描述
代码实现:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;cin>>n;
	int a[n];
	for(int i=0;i<n;i++)cin>>a[i]; 
	for(int i=1;i<n;i++)//外层循环想让有序的范围从0~0到0~i 
	{
		//0~0 有序的...0~2...0~3... 
		//0~i 有序 
		for(int j=i-1;a[j]>a[j+1]&&j>=0;j--)//j+1的位置是要处理的数 
		{
			int t=a[j];
			a[j]=a[j+1];
			a[j+1]=t; 
		} 
	}
	for(int i=0;i<n;i++)cout<<a[i]<<" ";
	cout<<endl;
}

总结

  • 冒泡排序与选择排序的时间复杂度表现与数据状况无关,即无论数据本身在排序前是否有序或无序都不影响时间复杂度。

  • 插入排序的时间复杂度与数据状况有关

    • eg:若数据本来就是有序的则其时间复杂度为O(n)
  • 插入排序在常数级别的表现比冒泡排序和选择排序更优

关于时间复杂度

(算法流程按照最差情况来估计时间复杂度)

  • 常数时间的操作
    一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。
  • 时间复杂度为一个算法流程中,常数操作数量的一个指标。常用0(读作big0)来表示。具体来说,先要对一个算法流程非常熟悉,然后去写出这个算法流程中,发生了多少常数操作,进而总结出常数操作数量的表达式。
  • 在表达式中,只要高阶项,不要低阶项,也不要高阶项的系数,剩下的部分如果为f(N),那么时间复杂度为0(f(N))。
  • 评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行时间,也就是“常数项时间”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值