题目大意:n个点,m条边,k个虫洞(虫洞之间相互连接不消耗任何代价可以从一个虫洞到达随机的另一个虫洞),问:从1->n的最小期望多少,写成分数形式。
思路:如果没有虫洞开始想,若没有则就是一条最短路。但是在某个点存在虫洞的时候,虫洞所连接的剩余所有虫洞都有可能到达,那么此点x处的期望就是dis1[x](从1->x的最短路)+sumof(dis2[y](从n->y的最短路且y是x所连接的一个虫洞))/(k-1),那么我们两边bfs求出1->x的最短路和n->x的最短路后,枚举一遍虫洞就可找出最小值。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=2e6+7;
int n,m,k;
int h[maxn];
struct Edge{
int to,next;
}edge[maxn];
int head[maxn],dis1[maxn],dis2[maxn],vis[maxn],idex=0;
void add(int u,int to){
edge[++idex].to=to;
edge[idex].next=head[u];
head[u]=idex;
}
struct Node{
int w,now;
bool operator<(const Node &x)const{
return w>x.w;
}
};
void dij(int st,int dis[]){
for(int i=1;i<=n;i++){
dis[i]=0x3f3f3f3f;
vis[i]=0;
}
priority_queue<Node> q;
q.push({0,st});
dis[st]=0;
while(!q.empty()){
auto x=q.top();
q.pop();
int u=x.now;
if(vis[u])
continue;
vis[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(dis[v]>dis[u]+1){
dis[v]=dis[u]+1;
q.push({dis[v],v});
}
}
}
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
memset(head,-1,sizeof(head));
cin>>n>>m>>k;
for(int i=1;i<=k;i++){
cin>>h[i];
}
for(int i=1;i<=m;i++){
int a,b;
cin>>a>>b;
add(a,b);
add(b,a);
}
//两边bfs从两边出发左右夹击
dij(1,dis1);//求dis1
dij(n,dis2);//求dis2
int sum=0;
for(int i=1;i<=k;i++){
sum+=dis2[h[i]];
}
int Min=dis1[n]*(k-1);
for(int i=1;i<=k;i++){
int temp=sum-dis2[h[i]]+dis1[h[i]]*(k-1);//*(k-1)原因是一个正向到达一个虫洞后
//会有(k-1)条可能的路线,最后要/(k-1)才是期望,但是/变*更加易于计算
Min=min(Min,temp);
}
int t=__gcd(Min,k-1);
cout<<Min/t<<"/"<<(k-1)/t<<"\n";
}